login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A232632
Coefficient table for the minimal polynomials of s(2*l+1)^2 = (2*sin(Pi/(2*l+1)))^2.
3
0, 1, -3, 1, 5, -5, 1, -7, 14, -7, 1, -3, 9, -6, 1, -11, 55, -77, 44, -11, 1, 13, -91, 182, -156, 65, -13, 1, 1, -8, 14, -7, 1, 17, -204, 714, -1122, 935, -442, 119, -17, 1, -19, 285, -1254, 2508, -2717, 1729, -665, 152, -19, 1, 1, -16, 60, -78, 44, -11, 1, -23, 506, -3289, 9867, -16445, 16744, -10948, 4692, -1311, 230, -23, 1
OFFSET
0,3
COMMENTS
The length of row l is delta(2*l+1) + 1 = A055034(2*l+1) + 1, l >= 0.
See the comments on A232631 (even n case) for s(n) = 2*sin(Pi/n) and the minimal polynomial of s(n)^2. Here n = 2*l+1 and s(2*l+1)^2 = 4 - rho(2*l+1)^2 is an integer in the algebraic number field Q(rho(2*l+1)). The minimal polynomial of s(2*l+1)^2 is then MPs2(2*l+1, x) = product(x - 2*(1 + cos(Pi*rpnodd(2*l+1,j)/(2*l+1))), j=1..delta(2*l+1)), l >= 0, where rpnodd(2*l+1) is the list of positive odd numbers < 2*l+1 and relatively prime to 2*l+1. rpnodd(2*l+1,j) is the j-th member of this increasingly ordered list. Here the identity 4 - (2*cos(Pi*(2*k+1)/(2*l+1)))^2 = 2*(1 - cos(Pi*2*(2*k+1)/(2*l+1))) = 2*(1 - (- cos(Pi*(2*l+1 - 2*(2*k+1))/ (2*l+1)))) has been used, and for 2*k+1 < 2*l+1 and gcd(2*k+1, 2*l+1) = 1 this becomes the product given above because 1 = gcd(-(2*k+1), 2*l+1) = gcd(-2*(2*k+1), 2*l+1) = gcd(2*l+1, -2*(2*k+1) + (2*l+1)).
This computation was motivated by a preprint of S. Mustonen, P. Haukkanen and J. K. Merikoski, called ``Polynomials associated with squared diagonals of regular polygons'', Nov 16 2013.
FORMULA
a(l,m) = [x^m] MPs2(2*l+1, x), l >= 1, m = 0, 1, ...., delta(l), with the minimal polynomial MPs2(l, x) of (2*sin(Pi/(2*l+1)))^2, explained above in a comment.
EXAMPLE
The table a(l,m) begins (n = 2*l+1):
------------------------------------------------------------------------------------------------------
n, l\m 0 1 2 3 4 5 6 7 8 9 10 11 ...
1, 0: 0 1
3, 1: -3 1
5, 2: 5 -5 1
7, 3: -7 14 -7 1
9, 4: -3 9 -6 1
11, 5: -11 55 -77 44 -11 1
13, 6: 13 -91 182 -156 65 -13 1
15, 7: 1 -8 14 -7 1
17, 8: 17 -204 714 -1122 935 -442 119 -17 1
19, 9: -19 285 -1254 2508 -2717 1729 -665 152 -19 1
21, 10: 1 -16 60 -78 44 -11 1
23, 11: -23 506 -3289 9867 -16445 16744 -10948 4692 -1311 230 -23 1
25, 12: 5 -125 875 -2675 4300 -4005 2275 -800 170 -20 1
27, 13: -3 81 -540 1386 -1782 1287 -546 135 -18 1
....
n=29, l=14: 29,-1015,10556,-51272,140998,-243542,281010,-224808,127281,-51359,14674, -2900,377,-29,1.
n=31, l=15: -31, 1240, -14756, 82212, -260338, 520676, -700910, 660858, -447051, 219604, -78430, 20150, -3627, 434, -31, 1.
...
The minimal polynomial of s(5)^2 = (2*sin(Pi/5))^2 = 4 - rho(5)^2
= 2*(1 - cos(Pi*2/5)) = 2*(1 + cos(Pi*3/5)), approx. 1.381966, is MPs2(5, x) = product(x - 2*(1 + cos(Pi*rpnodd(5,j)/5)), j=1..2) = (x - 2*(1 + cos(Pi/5))*(x - 2*(1 + cos(Pi*3/5)) = (x - (2 + phi)*(x - (2 + 1 - phi)) = x^2 - 5*x + (6 + phi - phi^2) = x^2 - 5*x +5, where phi = rho(5) is the golden section.
The row n=17 checks with WolframAlpha's MinimalPolynomial[(2*sin(Pi/17))^2 ,x] = 17-204 x+714 x^2-1122 x^3+935 x^4-442 x^5+119 x^6-17 x^7+x^8.
MATHEMATICA
Flatten[ CoefficientList[ Table[ MinimalPolynomial[ (2*Sin[Pi/(2*l+1)])^2, x], {l, 0, 15}], x]] (adapted from Jean-François Alcover, A187360) - Wolfdieter Lang, Dec 23 2013
CROSSREFS
Cf. A232631 (even n), A232633 (all n), A055034.
Sequence in context: A131305 A131303 A131768 * A084533 A082985 A111125
KEYWORD
sign,tabf,easy
AUTHOR
Wolfdieter Lang, Dec 18 2013
STATUS
approved