

A106148


A 9 symbol three state three level neural net feedback substitution using Levels Terdragon Rauzy Terdragon.


0



4, 5, 4, 8, 9, 8, 2, 3, 2, 3, 1, 3, 2, 3, 2, 5, 6, 5, 6, 4, 6, 5, 6, 5, 6, 4, 6, 4, 5, 4, 6, 4, 6, 5, 6, 5, 6, 4, 6, 5, 6, 5, 9, 7, 8, 9, 9, 7, 8, 9, 8, 7, 8, 9, 9, 7, 8, 9, 9, 7, 8, 9, 8, 7, 8, 9, 8, 9, 8, 7, 8, 9, 8, 7, 8, 9, 9, 7, 8, 9, 9, 7, 8, 9, 8, 7, 8, 9, 9, 7, 8, 9, 9, 3, 1, 3, 1, 2, 1, 2, 3, 2, 3, 1, 3
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

The three levels are:{1,2,3},{4,5,6},{7,8,9} They give triangular states as: {1} :as 0th state {4, 5, 4}, {8, 9, 8}, {2, 3, 2, 3, 1, 3, 2, 3, 2}, {5, 6, 5, 6, 4, 6, 5, 6, 5, 6, 4, 6, 4, 5, 4, 6, 4, 6, 5, 6, 5, 6, 4, 6, 5, 6,5}, {9, 7, 8, 9, 9, 7, 8, 9, 8, 7, 8, 9, 9, 7, 8, 9, 9, 7, 8, 9, 8, 7, 8, 9, 8, 9, 8, 7, 8, 9, 8, 7, 8, 9, 9, 7, 8, 9, 9, 7, 8, 9, 8, 7, 8, 9, 9, 7, 8, 9, 9},


LINKS

Table of n, a(n) for n=0..104.
F. M. Dekking, Recurrent Sets, Advances in Mathematics, vol. 44, no.1, April 1982, page 96, section 4.11.


FORMULA

1>{4, 5, 6}, 2>{5, 6, 5}, 3>{6, 4, 6}, 4>{8}, 5>{9}, 6>{7, 8, 9}, 7>{1, 2, 1}, 8>{2, 3, 2}, 9>{3, 1, 3}


MATHEMATICA

s[1] = {4, 5, 4}; s[2] = {5, 6, 5}; s[3] = {6, 4, 6}; s[4] = {8}; s[5] = {9}; s[6] = {7, 8, 9}; s[7] = {1, 2, 1}; s[8] = {2, 3, 2}; s[9] = {3, 1, 3}; t[a_] := Flatten[s /@ a]; p[0] = {1}; p[1] = t[p[0]]; p[n_] := t[p[n  1]] aa = Table[p[i], {i, 1, 6}] Flatten[aa]


CROSSREFS

Sequence in context: A201296 A246954 A045834 * A192038 A046577 A176016
Adjacent sequences: A106145 A106146 A106147 * A106149 A106150 A106151


KEYWORD

nonn,uned


AUTHOR

Roger L. Bagula, May 07 2005


STATUS

approved



