login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A246353
If n = Sum 2^e_i, e_i distinct, then a(n) = Position of (product prime_{e_i+1}) among squarefree numbers (A005117).
4
1, 2, 3, 5, 4, 7, 11, 19, 6, 10, 14, 28, 23, 44, 65, 129, 8, 15, 21, 41, 34, 69, 101, 203, 48, 94, 144, 283, 233, 470, 703, 1405, 9, 17, 26, 49, 40, 80, 120, 236, 57, 111, 168, 334, 279, 554, 833, 1661, 89, 176, 261, 521, 438, 873, 1304, 2610, 609, 1217, 1827, 3650, 3046, 6091, 9131
OFFSET
0,2
COMMENTS
This is an inverse function to A048672. Note the indexing: here the domain starts from 0, but the range starts from 1, while in A048672 it is the opposite.
Sequence is obtained when the range of A019565 is compacted so that it becomes surjective on N, thus the logarithmic scatter plots look very similar. (Same applies to A064273). Compare also to the plot of A005940.
FORMULA
a(n) = A013928(1+A019565(n)) = 1 + A013928(A019565(n)).
a(n) = A064273(n) + 1.
For all n >= 0, A048672(a(n)) = n.
For all n >= 1, a(A048672(n)) = n.
PROG
(PARI)
allocatemem(234567890);
default(primelimit, 2^22)
uplim_for_13928 = 13123111;
v013928 = vector(uplim_for_13928); A013928(n) = v013928[n];
v013928[1]=0; n=1; while((n < uplim_for_13928), if(issquarefree(n), v013928[n+1] = v013928[n]+1, v013928[n+1] = v013928[n]); n++);
A019565(n) = {factorback(Mat(vector(if(n, #n=vecextract(binary(n), "-1..1")), j, [prime(j), n[j]])~))}; \\ This function from M. F. Hasler
A246353(n) = 1+A013928(A019565(n));
for(n=0, 478, write("b246353.txt", n, " ", A246353(n)));
(Scheme) (definec (A246353 n) (let loop ((n n) (i 1) (p 1)) (cond ((zero? n) (A013928 (+ 1 p))) ((odd? n) (loop (/ (- n 1) 2) (+ 1 i) (* p (A000040 i)))) (else (loop (/ n 2) (+ 1 i) p)))))
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Aug 23 2014
STATUS
approved