login
A194009
Triangular array: the fission of (p(n,x)) by (q(n,x)), where p(n,x)=x*p(n-1,x)+n+1 with p(0,x)=1, and q(n,x)=sum{F(k+1)*x^(n-k) : 0<=k<=n}, where F=A000045 (Fibonacci numbers).
2
2, 3, 5, 4, 7, 13, 5, 9, 17, 28, 6, 11, 21, 35, 58, 7, 13, 25, 42, 70, 114, 8, 15, 29, 49, 82, 134, 218, 9, 17, 33, 56, 94, 154, 251, 407, 10, 19, 37, 63, 106, 174, 284, 461, 747, 11, 21, 41, 70, 118, 194, 317, 515, 835, 1352, 12, 23, 45, 77, 130, 214, 350, 569
OFFSET
0,1
COMMENTS
See A193842 for the definition of the fission of P by Q, where P and Q are sequences of polynomials or triangular arrays (of coefficients of polynomials).
EXAMPLE
First six rows:
2
3...5
4...7....13
5...9....17...28
6...11...21...35...58
7...13...25...42...70...114
MATHEMATICA
z = 11;
p[n_, x_] := x*p[n - 1, x] + n + 1; p[0, n_] := 1;
q[n_, x_] := Sum[Fibonacci[k + 1]*x^(n - k), {k, 0, n}];
p1[n_, k_] := Coefficient[p[n, x], x^k];
p1[n_, 0] := p[n, x] /. x -> 0;
d[n_, x_] := Sum[p1[n, k]*q[n - 1 - k, x], {k, 0, n - 1}]
h[n_] := CoefficientList[d[n, x], {x}]
TableForm[Table[Reverse[h[n]], {n, 0, z}]]
Flatten[Table[Reverse[h[n]], {n, -1, z}]] (* A194009 *)
TableForm[Table[h[n], {n, 0, z}]]
Flatten[Table[h[n], {n, -1, z}]] (* A194010 *)
CROSSREFS
Sequence in context: A355066 A028691 A246353 * A242388 A257985 A089557
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Aug 11 2011
STATUS
approved