Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #7 Jan 09 2024 12:29:17
%S 2,3,5,4,7,13,5,9,17,28,6,11,21,35,58,7,13,25,42,70,114,8,15,29,49,82,
%T 134,218,9,17,33,56,94,154,251,407,10,19,37,63,106,174,284,461,747,11,
%U 21,41,70,118,194,317,515,835,1352,12,23,45,77,130,214,350,569
%N Triangular array: the fission of (p(n,x)) by (q(n,x)), where p(n,x)=x*p(n-1,x)+n+1 with p(0,x)=1, and q(n,x)=sum{F(k+1)*x^(n-k) : 0<=k<=n}, where F=A000045 (Fibonacci numbers).
%C See A193842 for the definition of the fission of P by Q, where P and Q are sequences of polynomials or triangular arrays (of coefficients of polynomials).
%e First six rows:
%e 2
%e 3...5
%e 4...7....13
%e 5...9....17...28
%e 6...11...21...35...58
%e 7...13...25...42...70...114
%t z = 11;
%t p[n_, x_] := x*p[n - 1, x] + n + 1; p[0, n_] := 1;
%t q[n_, x_] := Sum[Fibonacci[k + 1]*x^(n - k), {k, 0, n}];
%t p1[n_, k_] := Coefficient[p[n, x], x^k];
%t p1[n_, 0] := p[n, x] /. x -> 0;
%t d[n_, x_] := Sum[p1[n, k]*q[n - 1 - k, x], {k, 0, n - 1}]
%t h[n_] := CoefficientList[d[n, x], {x}]
%t TableForm[Table[Reverse[h[n]], {n, 0, z}]]
%t Flatten[Table[Reverse[h[n]], {n, -1, z}]] (* A194009 *)
%t TableForm[Table[h[n], {n, 0, z}]]
%t Flatten[Table[h[n], {n, -1, z}]] (* A194010 *)
%Y Cf. A193842, A194010.
%K nonn,tabl
%O 0,1
%A _Clark Kimberling_, Aug 11 2011