login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A245598
Smallest k > 1 such that prime(n)*k^prime(n)+1 is prime.
4
3, 4, 8, 4, 42, 60, 8, 198, 8, 54, 130, 778, 108, 178, 924, 44, 180, 706, 4, 170, 474, 30, 480, 1578, 214, 416, 34, 132, 2940, 60, 834, 666, 336, 168, 408, 216, 538, 114, 60, 266, 188, 58, 36, 1504, 4868, 2398, 430, 4, 1940, 408, 2036, 3038, 1146, 1902
OFFSET
1,1
COMMENTS
Start:
For primes, p < 25000, for which p*k^p-1 is a prime:
k=1: only the first prime, 2;
k=2: none;
k=3: only the first prime, 2;
k=4: 3, 7, 67, 223, …, ; indices: 2, 4, 19, 48, …, ;
k=6: 2, 9901, 12043, …, ; indices: 1, 1221, 1443, …, ;
k=8: 5, 17, 23, …, ; indices: 3, 7, 9, …, ;
k=9 only for the first prime, 2;
k=10: 3, 2161, …, ; indices: 2, 326, …, ; etc.
End. - Robert G. Wilson v, Aug 05 2014
LINKS
EXAMPLE
2*2^2+1=9 composite.
2*3^2+1=19 prime so a(1)=3.
MATHEMATICA
f[n_] := Block[{k = 2, p = Prime@ n}, While[ !PrimeQ[p*k^p - 1], k += 2]; k]; Array[f, 60] (* Robert G. Wilson v, Aug 27 2014 *)
PROG
(PFGW & SCRIPT)
SCRIPT
DIM i, 1
DIM j
DIM n
DIMS t
OPENFILEOUT myf, a(n).txt
LABEL loop1
SET i, i+1
IF i>300 THEN END
SET j, p(i)
SET n, 0
LABEL loop2
SET n, n+2
SETS t, %d, %d, %d\,; i; j; n
PRP j*n^j+1, t
IF ISPRP THEN GOTO a
GOTO loop2
LABEL a
WRITE myf, t
GOTO loop1
(PARI) a(n) = k=2; while(!isprime(prime(n)*k^prime(n)+1), k++); k
vector(40, n, a(n)) \\ Colin Barker, Jul 30 2014
CROSSREFS
Cf. A245597.
Sequence in context: A198125 A127122 A086850 * A340533 A050274 A262951
KEYWORD
nonn
AUTHOR
Pierre CAMI, Jul 27 2014
EXTENSIONS
Definition corrected by Zak Seidov, Jul 27 2014
STATUS
approved