login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A245597
Smallest k > 1 such that prime(n)*k^prime(n)-1 is prime.
4
2, 2, 4, 8, 10, 56, 46, 6, 4, 102, 98, 90, 52, 12, 28, 418, 426, 482, 38, 28, 140, 26, 354, 882, 756, 268, 146, 4, 260, 76, 48, 288, 1584, 38, 1102, 2688, 464, 3500, 16, 5146, 2562, 2072, 1020, 726, 306, 1796, 38, 866, 508, 800, 3480, 132, 750, 4170
OFFSET
1,1
COMMENTS
Start:
For primes, p < 25,000, for which p*k^p-1 is a prime:
k=1: just 3;
k=2: 2, 3, 751, 12379, …, ; indices: 1, 2, 133, 1478, …, ;
k=4: 2, 3, 5, 23, 107, 1973, 20747, …, ; indices: 1, 2, 3, 9, 28, 298, 2336, …, ;
k=6: 2, 3, 19, 107, 1999, …, ; indices: 1, 2, 8, 28, 303, …, ;
k=8: 2, 7, …, ; indices: 1, 4, …, ;
k=10: 2, 3, 11, 2843, …, ; indices: 1, 2, 5, 413, …, ; etc.
End. - Robert G. Wilson v, Aug 02 2014
LINKS
EXAMPLE
2*2^2-1=7 prime so a(1)=2.
3*2^3-1=23 prime so a(2)=2.
5*2^5-1=159 composite.
5*4^5-1=5119 prime so a(3)=4.
MATHEMATICA
f[n_] := Block[{k = 2, p = Prime@ n}, While[ !PrimeQ[p*k^p - 1], k += 2]; k]; Array[f, 60] (* Robert G. Wilson v, Aug 02 2014 *)
PROG
(PFGW & SCRIPT)
SCRIPT
DIM i, 0
DIM j
DIM n, -1
DIMS t
OPENFILEOUT myf, a(n).txt
LABEL loop1
SET i, i+1
IF i>300 THEN END
SET j, p(i)
SET n, 0
LABEL loop2
SET n, n+2
SETS t, %d, %d, %d\,; i; j; n
PRP j*n^j-1, t
IF ISPRP THEN GOTO a
GOTO loop2
LABEL a
WRITE myf, t
GOTO loop1
(PARI) a(n) = k=2; while(!isprime(prime(n)*k^prime(n)-1), k+=2); k
vector(20, n, a(n)) \\ Colin Barker, Jul 27 2014
CROSSREFS
Cf. A245598.
Sequence in context: A333045 A050047 A056381 * A324039 A019463 A152763
KEYWORD
nonn
AUTHOR
Pierre CAMI, Jul 27 2014
EXTENSIONS
Definition corrected by Colin Barker, Jul 27 2014
STATUS
approved