login
A198125
Decimal expansion of greatest x having 2*x^2+2x=cos(x).
3
3, 4, 8, 4, 9, 5, 0, 4, 8, 1, 7, 3, 8, 4, 2, 9, 1, 6, 5, 5, 6, 6, 8, 4, 1, 8, 4, 7, 1, 9, 9, 0, 5, 9, 9, 3, 9, 6, 1, 7, 9, 0, 4, 1, 3, 8, 9, 4, 7, 5, 1, 8, 9, 5, 3, 6, 0, 4, 1, 6, 1, 8, 2, 0, 6, 2, 1, 8, 2, 5, 6, 7, 0, 2, 6, 2, 9, 1, 6, 0, 5, 9, 4, 5, 9, 2, 4, 8, 6, 5, 3, 5, 4, 0, 3, 6, 1, 8, 4
OFFSET
0,1
COMMENTS
See A197737 for a guide to related sequences. The Mathematica program includes a graph.
EXAMPLE
least x: -1.1678731527385671979308122427699630...
greatest x: 0.34849504817384291655668418471990...
MATHEMATICA
a = 2; b = 2; c = 1;
f[x_] := a*x^2 + b*x; g[x_] := c*Cos[x]
Plot[{f[x], g[x]}, {x, -2, 1}]
r1 = x /. FindRoot[f[x] == g[x], {x, -1.2, -1.1}, WorkingPrecision -> 110]
RealDigits[r1](* A198124 *)
r2 = x /. FindRoot[f[x] == g[x], {x, .34, .35}, WorkingPrecision -> 110]
RealDigits[r2](* A198125 *)
CROSSREFS
Cf. A197737.
Sequence in context: A020812 A021291 A179104 * A127122 A086850 A245598
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 22 2011
STATUS
approved