login
A198124
Decimal expansion of least x having 2*x^2+2x=cos(x).
3
1, 1, 6, 7, 8, 7, 3, 1, 5, 2, 7, 3, 8, 5, 6, 7, 1, 9, 7, 9, 3, 0, 8, 1, 2, 2, 4, 2, 7, 6, 9, 9, 6, 3, 0, 8, 1, 7, 5, 4, 3, 1, 1, 3, 5, 6, 7, 0, 9, 6, 3, 3, 5, 0, 8, 3, 6, 5, 3, 9, 2, 4, 5, 1, 0, 0, 6, 7, 5, 4, 6, 9, 5, 2, 1, 7, 2, 6, 9, 0, 0, 0, 3, 0, 3, 1, 4, 3, 2, 3, 5, 5, 8, 4, 9, 8, 1, 5, 1
OFFSET
1,3
COMMENTS
See A197737 for a guide to related sequences. The Mathematica program includes a graph.
EXAMPLE
least x: -1.1678731527385671979308122427699630...
greatest x: 0.3484950481738429165566841847199059939...
MATHEMATICA
a = 2; b = 2; c = 1;
f[x_] := a*x^2 + b*x; g[x_] := c*Cos[x]
Plot[{f[x], g[x]}, {x, -2, 1}]
r1 = x /. FindRoot[f[x] == g[x], {x, -1.2, -1.1}, WorkingPrecision -> 110]
RealDigits[r1](* A198124 *)
r2 = x /. FindRoot[f[x] == g[x], {x, .34, .35}, WorkingPrecision -> 110]
RealDigits[r2](* A198125 *)
CROSSREFS
Cf. A197737.
Sequence in context: A286474 A162594 A229948 * A120207 A202703 A308147
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 22 2011
STATUS
approved