login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A162594
Differences of cubes: T(n,n) = n^3, T(n,k) = T(n,k+1) - T(n-1,k), 0 <= k < n, triangle read by rows.
2
0, 1, 1, 6, 7, 8, 6, 12, 19, 27, 0, 6, 18, 37, 64, 0, 0, 6, 24, 61, 125, 0, 0, 0, 6, 30, 91, 216, 0, 0, 0, 0, 6, 36, 127, 343, 0, 0, 0, 0, 0, 6, 42, 169, 512, 0, 0, 0, 0, 0, 0, 6, 48, 217, 729, 0, 0, 0, 0, 0, 0, 0, 6, 54, 271, 1000, 0, 0, 0, 0, 0, 0, 0, 0, 6, 60, 331, 1331
OFFSET
0,4
COMMENTS
T(n,n) = A000578(n);
T(n,n-1) = A003215(n-1), n > 0;
T(n,n-2) = A008588(n-2), n > 1;
T(n,n-3) = A010722(n-3), n > 2;
T(n,n-j) = A000004(n-j), 4 <= j <= n;
for n > 2: sum of n-th row = (n+1)^3.
EXAMPLE
Triangle begins:
0,
1, 1,
6, 7, 8,
6, 12, 19, 27,
0, 6, 18, 37, 64,
0, 0, 6, 24, 61, 125,
...
MATHEMATICA
T[n_, n_] := n^3; T[n_, k_] := T[n, k] = T[n, k + 1] - T[n - 1, k]; Table[T[n, k], {n, 0, 15}, {k, 0, n}] // Flatten (* G. C. Greubel, Jul 04 2018 *)
PROG
(PARI) T(n, k) = if (k==n, n^3, T(n, k+1) - T(n-1, k));
tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n, k), ", ")); print); \\ Michel Marcus, Jul 05 2018
CROSSREFS
Cf. A162593 (differences of squares).
Sequence in context: A085661 A265276 A286474 * A229948 A198124 A120207
KEYWORD
nonn,tabl
AUTHOR
Reinhard Zumkeller, Jul 07 2009
STATUS
approved