login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A162593
Differences of squares: T(n,n) = n^2, T(n,k) = T(n,k+1) - T(n-1,k), 0 <= k < n, triangle read by rows.
2
0, 1, 1, 2, 3, 4, 0, 2, 5, 9, 0, 0, 2, 7, 16, 0, 0, 0, 2, 9, 25, 0, 0, 0, 0, 2, 11, 36, 0, 0, 0, 0, 0, 2, 13, 49, 0, 0, 0, 0, 0, 0, 2, 15, 64, 0, 0, 0, 0, 0, 0, 0, 2, 17, 81, 0, 0, 0, 0, 0, 0, 0, 0, 2, 19, 100, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 21, 121, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 23, 144
OFFSET
0,4
COMMENTS
T(n,n) = A000290(n);
T(n,n-1) = A005408(n-1), n > 0;
T(n,n-2) = A007395(n-2), n > 1;
T(n,n-j) = A000004(n-j), 3 <= j <= n;
sum of n-th row = if n <= 1 then 2*n else (n+1)^2.
EXAMPLE
From Jon E. Schoenfield, Jul 04 2018: (Start)
Table begins
.
n\k| 0 1 2 3 4 5 6 7 8 9 10 11 12
---+--------------------------------------------------
0 | 0
1 | 1 1
2 | 2 3 4
3 | 0 2 5 9
4 | 0 0 2 7 16
5 | 0 0 0 2 9 25
6 | 0 0 0 0 2 11 36
7 | 0 0 0 0 0 2 13 49
8 | 0 0 0 0 0 0 2 15 64
9 | 0 0 0 0 0 0 0 2 17 81
10 | 0 0 0 0 0 0 0 0 2 19 100
11 | 0 0 0 0 0 0 0 0 0 2 21 121
12 | 0 0 0 0 0 0 0 0 0 0 2 23 144
...
(End)
MATHEMATICA
T[n_, n_] := n^2; T[n_, k_] := T[n, k] = T[n, k + 1] - T[n - 1, k]; Table[T[n, k], {n, 0, 15}, {k, 0, n}] // Flatten (* G. C. Greubel, Jul 04 2018 *)
CROSSREFS
Cf. A162594 (differences of cubes).
Sequence in context: A230431 A190886 A257845 * A279125 A011025 A286248
KEYWORD
nonn,tabl
AUTHOR
Reinhard Zumkeller, Jul 07 2009
STATUS
approved