Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 Jul 05 2018 04:59:29
%S 0,1,1,2,3,4,0,2,5,9,0,0,2,7,16,0,0,0,2,9,25,0,0,0,0,2,11,36,0,0,0,0,
%T 0,2,13,49,0,0,0,0,0,0,2,15,64,0,0,0,0,0,0,0,2,17,81,0,0,0,0,0,0,0,0,
%U 2,19,100,0,0,0,0,0,0,0,0,0,2,21,121,0,0,0,0,0,0,0,0,0,0,2,23,144
%N Differences of squares: T(n,n) = n^2, T(n,k) = T(n,k+1) - T(n-1,k), 0 <= k < n, triangle read by rows.
%C T(n,n) = A000290(n);
%C T(n,n-1) = A005408(n-1), n > 0;
%C T(n,n-2) = A007395(n-2), n > 1;
%C T(n,n-j) = A000004(n-j), 3 <= j <= n;
%C sum of n-th row = if n <= 1 then 2*n else (n+1)^2.
%H G. C. Greubel, <a href="/A162593/b162593.txt">Rows n=0..99 of triangle, flattened</a>
%e From _Jon E. Schoenfield_, Jul 04 2018: (Start)
%e Table begins
%e .
%e n\k| 0 1 2 3 4 5 6 7 8 9 10 11 12
%e ---+--------------------------------------------------
%e 0 | 0
%e 1 | 1 1
%e 2 | 2 3 4
%e 3 | 0 2 5 9
%e 4 | 0 0 2 7 16
%e 5 | 0 0 0 2 9 25
%e 6 | 0 0 0 0 2 11 36
%e 7 | 0 0 0 0 0 2 13 49
%e 8 | 0 0 0 0 0 0 2 15 64
%e 9 | 0 0 0 0 0 0 0 2 17 81
%e 10 | 0 0 0 0 0 0 0 0 2 19 100
%e 11 | 0 0 0 0 0 0 0 0 0 2 21 121
%e 12 | 0 0 0 0 0 0 0 0 0 0 2 23 144
%e ...
%e (End)
%t T[n_, n_] := n^2; T[n_, k_] := T[n, k] = T[n, k + 1] - T[n - 1, k]; Table[T[n, k], {n, 0, 15}, {k, 0, n}] // Flatten (* _G. C. Greubel_, Jul 04 2018 *)
%Y Cf. A162594 (differences of cubes).
%K nonn,tabl
%O 0,4
%A _Reinhard Zumkeller_, Jul 07 2009