

A190886


a(n) = [5nr]5[nr], where r=sqrt(5).


6



1, 2, 3, 4, 0, 2, 3, 4, 0, 1, 2, 4, 0, 1, 2, 3, 0, 1, 2, 3, 4, 0, 2, 3, 4, 0, 1, 3, 4, 0, 1, 2, 3, 0, 1, 2, 3, 4, 1, 2, 3, 4, 0, 1, 3, 4, 0, 1, 2, 4, 0, 1, 2, 3, 4, 1, 2, 3, 4, 0, 2, 3, 4, 0, 1, 2, 4, 0, 1, 2, 3, 4, 1, 2, 3, 4, 0, 2, 3, 4, 0, 1, 2, 4, 0, 1, 2, 3, 0, 1, 2, 3, 4, 0, 2, 3, 4, 0, 1, 3, 4, 0, 1, 2, 3, 0, 1, 2, 3, 4, 1, 2, 3, 4, 0, 1, 3, 4, 0, 1, 2, 4, 0, 1, 2, 3, 4, 1, 2, 3, 4, 0
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

In general, suppose that a(n)=[(bn+c)r]b[nr][cr]. If r>0 and b and c are integers satisfying b>=2 and 0<=c<=b1, then 0<=a(n)<=b. The positions of 0 in the sequence a are of interest, as are the position sequences for 1,2,...,b. For c=0, there are b of these position sequences, and they comprise a partition of the positive integers.


LINKS

Table of n, a(n) for n=1..132.


FORMULA

a(n) = [5nr]5[nr], where r=sqrt(5).


MATHEMATICA

r = Sqrt[5];
f[n_] := Floor[5n*r]  5*Floor[n*r]
t = Table[f[n], {n, 1, 400}] (* A190886 *)
Flatten[Position[t, 0]] (* A190887 *)
Flatten[Position[t, 1]] (* A190888 *)
Flatten[Position[t, 2]] (* A190889 *)
Flatten[Position[t, 3]] (* A190890 *)
Flatten[Position[t, 4]] (* A190891 *)


CROSSREFS

Cf. A190887, A190888, A190889, A190890, A190891.
Sequence in context: A060511 A082853 A230431 * A257845 A162593 A279125
Adjacent sequences: A190883 A190884 A190885 * A190887 A190888 A190889


KEYWORD

nonn


AUTHOR

Clark Kimberling, May 26 2011


STATUS

approved



