login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A245601
Smallest prime Q such that prime(n)*(2*Q)^prime(n)+1 is prime.
2
3, 2, 7, 2, 181, 503, 43, 281, 919, 397, 2099, 389, 163, 89, 5641, 751, 1951, 353, 2, 3709, 4673, 1607, 769, 7699, 107, 7069, 17, 13147, 7841, 97, 5741, 2383, 5557, 251, 9661, 14969, 269, 2753, 18451, 2797, 4729, 29, 15649, 5387, 8539, 13001, 1481, 2
OFFSET
1,1
LINKS
Pierre CAMI and Jens Kruse Andersen, Table of n, a(n) for n = 1..200 (first 100 terms from Pierre CAMI)
EXAMPLE
2*(2*2)^2 + 1 = 33 composite.
2*(2*3)^2 + 1 = 73 prime so a(1) = 3.
MATHEMATICA
a245601[n_Integer] := Catch[
Do[
If[And[PrimeQ[Q], PrimeQ[Prime[n]*(2*Q)^Prime[n] + 1]] == True,
Throw[Q]],
{Q, 1000000}]
]; Map[a245601, Range[50]] (* Michael De Vlieger, Aug 03 2014 *)
PROG
(PFGW & SCRIPT)
SCRIPT
DIM i, 0
DIM n
DIMS t
OPENFILEOUT myf, b(n).txt
LABEL loop1
SET i, i+1
IF i>100 THEN END
SET n, 0
LABEL loop2
SET n, n+1
SETS t, %d, %d\,; p(i); p(n)
PRP p(i)*(2*p(n))^p(i)+1, t
IF ISPRP THEN GOTO a
GOTO loop2
LABEL a
WRITE myf, t
GOTO loop1
(PARI) a(n)=for(k=1, 10^5, if(ispseudoprime(prime(n)*(2*prime(k))^prime(n)+1), return(prime(k))))
n=1; while(n<100, print1(a(n), ", "); n++) \\ Derek Orr, Jul 27 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
Pierre CAMI, Jul 27 2014
STATUS
approved