login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A349211
a(n) = Sum_{d|n} d^((d+1) mod 2).
2
1, 3, 2, 7, 2, 10, 2, 15, 3, 14, 2, 26, 2, 18, 4, 31, 2, 29, 2, 38, 4, 26, 2, 58, 3, 30, 4, 50, 2, 52, 2, 63, 4, 38, 4, 81, 2, 42, 4, 86, 2, 68, 2, 74, 6, 50, 2, 122, 3, 65, 4, 86, 2, 84, 4, 114, 4, 62, 2, 148, 2, 66, 6, 127, 4, 100, 2, 110, 4, 100, 2, 185, 2, 78, 6, 122, 4
OFFSET
1,2
COMMENTS
For each divisor d of n, add d if d is even. Otherwise add 1. For example, for n = 6, the divisors of 6 are 1, 2, 3, 6. This gives 1 + 2 + 1 + 6 = 10.
LINKS
FORMULA
a(p) = 2 iff p is an odd prime. - Wesley Ivan Hurt, Nov 28 2021
a(n) = A000005(A000265(n)) + A000203(A000265(n))*A000918(A001511(n)). - Chai Wah Wu, Jul 16 2022
MATHEMATICA
Table[DivisorSum[n, #^Mod[(# + 1), 2] &], {n, 77}] (* Michael De Vlieger, Nov 10 2021 *)
PROG
(PARI) A349211(n) = sumdiv(n, d, d^((1+d)%2)); \\ Antti Karttunen, Dec 14 2021
(Python)
from math import prod
from sympy import factorint
def A349211(n):
f = factorint(n>>(m:=(~n&n-1).bit_length())).items()
d = prod(e+1 for p, e in f)
s = prod((p**(e+1)-1)//(p-1) for p, e in f)
return d+s*((1<<(m+1))-2) # Chai Wah Wu, Jul 16 2022
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Nov 10 2021
STATUS
approved