login
A245590
Primes p such that p^2 + 6 is a semiprime.
1
2, 3, 7, 17, 23, 41, 47, 53, 59, 101, 149, 157, 173, 179, 193, 211, 229, 233, 239, 241, 251, 311, 347, 349, 353, 359, 373, 379, 383, 389, 409, 421, 439, 443, 457, 479, 499, 509, 521, 541, 571, 577, 599, 619, 641, 661, 691, 701, 719, 751, 761, 769, 809, 823, 829
OFFSET
1,1
LINKS
EXAMPLE
7 is in the sequence because it is prime and 7^2 + 6 = 55 = 5 * 11, which is semiprime.
23 is in the sequence because it is prime and 23^2 + 6 = 535 = 5 * 107, which is semiprime.
MAPLE
with(numtheory):A245590:=n->`if`(isprime(n) and bigomega(n^2+6)=2, n, NULL): seq(A245590 (n), n=1..1500);
MATHEMATICA
Select[Prime[Range[200]], PrimeOmega[#^2 + 6] == 2 &]
PROG
(PARI)
forprime(p=1, 10^4, if(bigomega(p^2+6)==2, print1(p, ", "))) \\ Derek Orr, Aug 03 2014
CROSSREFS
Cf. A109953 (primes p: p^2 + 2 is semiprime).
Cf. A243365 (primes p: p^2 + 6 and p^2 - 6 are semiprimes).
Sequence in context: A019335 A113425 A289379 * A110480 A338175 A268539
KEYWORD
nonn,easy
AUTHOR
K. D. Bajpai, Jul 26 2014
STATUS
approved