login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A245589
Primes which are the average of the two adjacent primes and also of the two adjacent squarefree numbers.
1
53, 593, 1747, 2287, 4013, 4409, 5563, 6317, 8117, 10657, 10853, 11933, 12547, 12583, 12653, 15161, 16937, 17047, 17851, 18341, 19603, 19949, 20107, 22051, 26693, 31051, 32993, 35851, 35911, 39113, 42209, 42533, 44041, 46889, 47527, 48259, 50417, 51461
OFFSET
1,1
COMMENTS
Intersection of A006562 and A240475. Intersection of A006562 and A245289.
LINKS
EXAMPLE
53 is in this sequence because 53 = prime(16) = (prime(15) + prime(17))/2 = (47 + 59)/2 and 53 = squarefree(33) = (squarefree(32) + squarefree(34))/2 = (51 + 55)/2.
MAPLE
Primes:= select(isprime, [$1..10^5]):
Sqfree:= select(numtheory:-issqrfree, [$1..10^5]):
A:= NULL:
for i from 2 to nops(Primes)-1 do
if Primes[i] = (Primes[i+1]+Primes[i-1])/2 then
member(Primes[i], Sqfree, 'j');
if Primes[i] = (Sqfree[j-1]+Sqfree[j+1])/2 then
A:= A, Primes[i]
fi
fi
od:
A; # Robert Israel, Aug 21 2014
PROG
(PARI)
maxp=60000;
p=[]; my(v=primes(maxp)); for(k=2, #v-1, if(2*v[k] == v[k-1]+v[k+1], p=concat(p, v[k]))); p;
v = select(n->issquarefree(n), vector(maxp, n, n));
s=[]; for(k=2, #v-1, if(2*v[k] == v[k-1]+v[k+1], s=concat(s, v[k]))); s;
setintersect(p, s) \\ Colin Barker, Aug 07 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
Missing term (16937) inserted by Colin Barker, Aug 07 2014
STATUS
approved