login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A243365
Primes p such that both p^2 + 6 and p^2 - 6 are semiprime.
2
101, 157, 173, 229, 233, 239, 347, 349, 353, 421, 439, 479, 521, 577, 619, 661, 719, 751, 761, 829, 881, 1019, 1061, 1117, 1129, 1153, 1277, 1289, 1321, 1447, 1453, 1489, 1523, 1579, 1721, 1733, 1801, 1811, 1823, 1831, 1861, 1871, 1873, 2027, 2099, 2221, 2239
OFFSET
1,1
LINKS
EXAMPLE
101 is in the sequence because 101 is prime. 101^2 + 6 = 10207 = 59 * 173 which is semiprime. 101^2 - 6 = 10195 = 5 * 2039 which is semiprime.
157 is in the sequence because 157 is prime. 157^2 + 6 = 24655 = 5 * 4931 which is semiprime. 157^2 - 6 = 24643 = 19 * 1297 which is semiprime.
MAPLE
with(numtheory): A243365:= proc()local k; k:=ithprime(n); if bigomega(k^2+6)=2 and bigomega(k^2-6)=2 then RETURN (k); fi; end: seq(A243365 (), n=1..5000);
MATHEMATICA
A243365 = {}; k = Prime[n]; Do[If[PrimeOmega[k^2 + 6] == 2 && PrimeOmega[k^2 - 6] == 2, AppendTo[A243365, k]], {n, 1000}]; A243365
Select[Prime[Range[400]], PrimeOmega[#^2+{6, -6}]=={2, 2}&] (* Harvey P. Dale, Jul 08 2014 *)
PROG
(PARI) s=[]; forprime(p=2, 3000, if(bigomega(p^2+6)==2 && bigomega(p^2-6)==2, s=concat(s, p))); s \\ Colin Barker, Jun 25 2014
CROSSREFS
Cf. A000040 (primes), A001358 (semiprimes).
Cf. A117328 (p+/-4 semiprime), A115395(p+/-6 semiprime), A242244 (p^2+/-2 semiprime).
Sequence in context: A243890 A129563 A141927 * A107186 A142660 A123037
KEYWORD
nonn
AUTHOR
K. D. Bajpai, Jun 24 2014
STATUS
approved