login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Primes p such that both p^2 + 6 and p^2 - 6 are semiprime.
2

%I #21 Jul 08 2014 17:30:38

%S 101,157,173,229,233,239,347,349,353,421,439,479,521,577,619,661,719,

%T 751,761,829,881,1019,1061,1117,1129,1153,1277,1289,1321,1447,1453,

%U 1489,1523,1579,1721,1733,1801,1811,1823,1831,1861,1871,1873,2027,2099,2221,2239

%N Primes p such that both p^2 + 6 and p^2 - 6 are semiprime.

%H K. D. Bajpai, <a href="/A243365/b243365.txt">Table of n, a(n) for n = 1..10000</a>

%e 101 is in the sequence because 101 is prime. 101^2 + 6 = 10207 = 59 * 173 which is semiprime. 101^2 - 6 = 10195 = 5 * 2039 which is semiprime.

%e 157 is in the sequence because 157 is prime. 157^2 + 6 = 24655 = 5 * 4931 which is semiprime. 157^2 - 6 = 24643 = 19 * 1297 which is semiprime.

%p with(numtheory): A243365:= proc()local k; k:=ithprime(n); if bigomega(k^2+6)=2 and bigomega(k^2-6)=2 then RETURN (k); fi; end: seq(A243365 (),n=1..5000);

%t A243365 = {}; k = Prime[n]; Do[If[PrimeOmega[k^2 + 6] == 2 && PrimeOmega[k^2 - 6] == 2, AppendTo[A243365, k]], {n, 1000}]; A243365

%t Select[Prime[Range[400]],PrimeOmega[#^2+{6,-6}]=={2,2}&] (* _Harvey P. Dale_, Jul 08 2014 *)

%o (PARI) s=[]; forprime(p=2, 3000, if(bigomega(p^2+6)==2 && bigomega(p^2-6)==2, s=concat(s, p))); s \\ _Colin Barker_, Jun 25 2014

%Y Cf. A000040 (primes), A001358 (semiprimes).

%Y Cf. A117328 (p+/-4 semiprime), A115395(p+/-6 semiprime), A242244 (p^2+/-2 semiprime).

%K nonn

%O 1,1

%A _K. D. Bajpai_, Jun 24 2014