OFFSET
1,1
COMMENTS
Primes made up of distinct digits except 1.
There are no composite numbers with divisors containing all the digits 0-9 and each digit appears exactly once.
Subsequence of A029743 (primes with distinct digits).
Numbers n such that A243360(n) = 9876543210.
Sequence contains 19558 terms, the last term is a(19558) = 987625403.
LINKS
Michael S. Branicky, Table of n, a(n) for n = 1..19558 (full sequence)
MATHEMATICA
Select[Range[203*10^6, 204*10^6], Sort[Flatten[IntegerDigits/@ Divisors[#]]] == Range[0, 9]&] (* Harvey P. Dale, Aug 22 2016 *)
PROG
(Magma) [n: n in [1..1000000] | Seqint(Sort(&cat[(Intseq(k)): k in Divisors(n)])) eq 9876543210]
(Python) # generates entire sequence
from sympy import isprime
from itertools import permutations as perms
dist = (int("".join(p)) for p in perms("023456789", 9) if p[0] != "0")
afull = [k for k in dist if isprime(k)]
print(afull[:24]) # Michael S. Branicky, Aug 04 2022
CROSSREFS
KEYWORD
nonn,base,fini,full
AUTHOR
Jaroslav Krizek, Jun 04 2014
STATUS
approved