login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers with divisors containing all the digits 0-9 and each digit appears exactly once (in base 10).
6

%I #15 Sep 08 2022 08:46:08

%S 203457869,203465789,203465897,203468579,203475869,203478659,

%T 203485697,203485769,203495867,203548967,203564897,203568947,

%U 203574689,203584679,203584769,203594687,203596847,203598467,203645879,203645987,203648957,203654987,203659487,203674589

%N Numbers with divisors containing all the digits 0-9 and each digit appears exactly once (in base 10).

%C Primes made up of distinct digits except 1.

%C There are no composite numbers with divisors containing all the digits 0-9 and each digit appears exactly once.

%C Subsequence of A029743 (primes with distinct digits).

%C Numbers n such that A243360(n) = 9876543210.

%C Sequence contains 19558 terms, the last term is a(19558) = 987625403.

%H Michael S. Branicky, <a href="/A243363/b243363.txt">Table of n, a(n) for n = 1..19558</a> (full sequence)

%t Select[Range[203*10^6,204*10^6],Sort[Flatten[IntegerDigits/@ Divisors[#]]] == Range[0,9]&] (* _Harvey P. Dale_, Aug 22 2016 *)

%o (Magma) [n: n in [1..1000000] | Seqint(Sort(&cat[(Intseq(k)): k in Divisors(n)])) eq 9876543210]

%o (Python) # generates entire sequence

%o from sympy import isprime

%o from itertools import permutations as perms

%o dist = (int("".join(p)) for p in perms("023456789", 9) if p[0] != "0")

%o afull = [k for k in dist if isprime(k)]

%o print(afull[:24]) # _Michael S. Branicky_, Aug 04 2022

%Y Cf. A037278, A176558, A243360, A243361, A243362, A243364.

%K nonn,base,fini,full

%O 1,1

%A _Jaroslav Krizek_, Jun 04 2014