OFFSET
1,2
COMMENTS
Subsequence of A034087.
The property "numbers divisible by the sum of the squares and product of their digits" leads to the Diophantine equation t*x1*x2*...*xr=s*(x1^2+x2^2+...+xr^2), where t and s are divisors of n; xi is from [1...9].
LINKS
David A. Corneth, Table of n, a(n) for n = 1..10000
EXAMPLE
315 is in the sequence because 3^2+1^2+5^2 = 35 divides 315 and 3*1*5 = 15 divides 315.
MATHEMATICA
dspQ[n_]:=Module[{idn=IntegerDigits[n], t}, t=Times@@idn; t!=0 && Divisible[n, Total[idn^2]] && Divisible[n, t]]; Select[Range[2*10^6], dspQ]
PROG
(PARI) isok(n) = (d = digits(n)) && (prd = prod(i=1, #d, d[i])) && !(n % prd) && !(n % sum(i=1, #d, d[i]^2)); \\ Michel Marcus, Jul 07 2014
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Michel Lagneau, Jul 07 2014
STATUS
approved