OFFSET

0,1

COMMENTS

This integral is mentioned by Bailey & Borwein as the only non-challenging one in the family J(t) = integral of log(t+x^2+y^2)/((1+x^2)*(1+y^2)) dx dy over the square [0,1]x[0,1], with t>=0.

LINKS

D. H. Bailey and J. M. Borwein, Experimental computation as an ontological game changer, 2014. see p. 5.

D. H. Bailey, J. M. Borwein and A. D. Kaiser, Automated Simplification of Large Symbolic Expressions, see p. 13.

FORMULA

Pi^2/16*log(2) - 7/8*zeta(3).

EXAMPLE

-0.6242317612735752156718034442003877374631268152861919268604793703917886...

MATHEMATICA

Pi^2/16*Log[2] - 7/8*Zeta[3] // RealDigits[#, 10, 105]& // First

CROSSREFS

KEYWORD

cons,nonn

AUTHOR

Jean-François Alcover, Jul 07 2014

STATUS

approved