login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A244860
Number of Fibonacci numbers in generation n of the tree at A232559.
1
1, 1, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 1, 1, 1, 0, 3, 0, 1, 1, 1, 2, 0, 0, 2, 0, 1, 1, 1, 2, 1, 0, 0, 3, 2, 0, 1, 1, 0, 0, 1, 1, 0, 4, 1, 0, 1, 0, 0, 1, 4, 2, 0, 1, 0, 1, 0, 1, 2, 1, 1, 0, 3, 0, 1, 0, 1, 1, 1, 2, 1, 0, 2, 3, 0, 1, 0, 0, 1, 0, 3, 0, 1, 0, 1, 1, 2
OFFSET
1,4
COMMENTS
Generation n consists of F(n) = A000045(n) distinct Fibonacci numbers. Is {a(n)} bounded above?
EXAMPLE
In the table below, g(n) denotes generation n of the tree at A232559.
n ... g(n) ............ a(n)
1 ... {1} ............. 1
2 ... {2} ............. 1
3 ... {3,4} ........... 1
4 ... {5,6,8} ......... 2
5 ... {7,9,10,12,16} .. 0
MATHEMATICA
z = 32; g[1] = {1}; f1[x_] := f1[x] = x + 1; f2[x_] := f2[x] = 2 x; h[1] = g[1]; b[n_] := b[n] = DeleteDuplicates[Union[f1[g[n - 1]], f2[g[n - 1]]]]; h[n_] := h[n] = Union[h[n - 1], g[n - 1]]; g[n_] := g[n] = Complement [b[n], Intersection[b[n], h[n]]]; f = Table[Fibonacci[n], {n, 1, 90}]; Table[Length[Intersection[g[n], f]], {n, 1, z}]
PROG
(PARI) See Links section.
CROSSREFS
Sequence in context: A166124 A134979 A112248 * A308009 A010872 A220663
KEYWORD
nonn
AUTHOR
Clark Kimberling, Jul 07 2014
EXTENSIONS
More terms from Rémy Sigrist, Feb 13 2023
STATUS
approved