OFFSET
1,1
COMMENTS
Since both numbers 55 and 56 are in the sequence we have sigma(55)*phi(55) = sigma(56)*phi(56) = sigma(57)*phi(57). It seems that 56 is the only number n which has the nice property sigma(n-1)*phi(n-1) = sigma(n)*phi(n) = sigma(n+1)*phi(n+1).
Up to n < 6*10^11 the similar equation phi(n)*sigma(n+1) = phi(n+1)*sigma(n) is satisfied only by n = 696003. - Giovanni Resta, Jun 08 2020
LINKS
Giovanni Resta, Table of n, a(n) for n = 1..52 (terms < 10^13, first 40 terms from Jens Kruse Andersen)
EXAMPLE
5 is in the sequence because sigma(5)*phi(5) = sigma(6)*phi(6) = 24.
55 is in the sequence because sigma(55)*phi(55) = sigma(56)*phi(56) = 2880.
MAPLE
with(numtheory): A244439:=n->`if`(phi(n)*sigma(n) = phi(n+1)*sigma(n+1), n, NULL): seq(A244439(n), n=1..10^4); # Wesley Ivan Hurt, Aug 16 2014
MATHEMATICA
Select[Range[10^5], Equal @@ (EulerPhi[{#, # + 1}] DivisorSigma[1, {#, # + 1}]) &] (* Giovanni Resta, Jun 08 2020 *)
PROG
(PARI)
for(n=1, 10^6, s=eulerphi(n)*sigma(n); if(s==eulerphi(n+1)*sigma(n+1), print1(n, ", "))) \\ Derek Orr, Aug 14 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
Farideh Firoozbakht, Aug 14 2014
EXTENSIONS
More terms from Jens Kruse Andersen, Aug 16 2014
STATUS
approved