login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A244437
E.g.f.: exp( Sum_{n>=1} (1 - exp(-n*x))^n / n ).
2
1, 1, 4, 41, 845, 30012, 1650475, 130216865, 13944696526, 1945060435587, 342412144747677, 74216506678085290, 19414505134246518741, 6029823819095965829293, 2193174302711080501699684, 923346371767630311443639677, 445468655004100653462280596881, 244137607569262412209821327718964
OFFSET
0,3
COMMENTS
Compare to: exp( Sum_{n>=1} (1 - exp(-x))^n/n ) = 1/(2-exp(x)), the e.g.f. of Fubini numbers (A000670).
LINKS
FORMULA
E.g.f.: exp( Sum_{n>=1} A092552(n)*x^n/n! ), where A092552(n) = Sum_{k=1..n} k!*(k-1)! * Stirling2(n, k)^2.
a(n) ~ (n!)^2 / (2 * sqrt(Pi) * sqrt(1-log(2)) * n^(3/2) * log(2)^(2*n)). - Vaclav Kotesovec, Aug 21 2014
EXAMPLE
E.g.f.: A(x) = 1 + x + 4*x^2/2! + 41*x^3/3! + 845*x^4/4! + 30012*x^5/5! +...
where
log(A(x)) = (1-exp(-x)) + (1-exp(-2*x))^2/2 + (1-exp(-3*x))^3/3 + (1-exp(-4*x))^4/4 + (1-exp(-5*x))^5/5 + (1-exp(-6*x))^6/6 +...
Explicitly,
log(A(x)) = x + 3*x^2/2! + 31*x^3/3! + 675*x^4/4! + 25231*x^5/5! + 1441923*x^6/6! +...+ A092552(n)*x^n/n! +...
MATHEMATICA
max = 20; s = Exp[Sum[(1 - Exp[-n x])^n/n, {n, 1, max}]] + O[x]^max; CoefficientList[s, x] Range[0, max-1]! (* Jean-François Alcover, Mar 31 2016 *)
PROG
(PARI) {a(n) = n!*polcoeff( exp( sum(m=1, n+1, (1 - exp(-m*x +x*O(x^n)))^m / m) ), n)}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
Sequence in context: A361182 A192547 A006129 * A265003 A193363 A284276
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Aug 21 2014
STATUS
approved