login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A193363
O.g.f. satisfies: A(x) = Sum_{n>=0} (n+1)^n * x^n * A((n+1)*x)^n/n! * exp(-(n+1)*x*A((n+1)*x)).
8
1, 1, 4, 41, 871, 36137, 2885457, 443469511, 131707909982, 75945551138638, 85425571722359386, 188277619627892581987, 816318863956958720950775, 6986374103851011507327849798, 118360360643974268213872443877649, 3978536338453184605328853807076468581
OFFSET
0,3
COMMENTS
Compare to the LambertW identity:
Sum_{n>=0} (n+1)^n * x^n * G(x)^n/n! * exp(-(n+1)*x*G(x)) = 1/(1 - x*G(x)).
EXAMPLE
O.g.f.: A(x) = 1 + x + 4*x^2 + 41*x^3 + 871*x^4 + 36137*x^5 + 2885457*x^6 +...
where
A(x) = exp(-x*A(x)) + 2*x*A(2*x)*exp(-2*x*A(2*x)) + 3^2*x^2*A(3*x)^2/2!*exp(-3*x*A(3*x)) + 4^3*x^3*A(4*x)^3/3!*exp(-4*x*A(4*x)) + 5^4*x^4*A(5*x)^4/4!*exp(-5*x*A(5*x)) + 6^5*x^5*A(6*x)^5/5!*exp(-6*x*A(6*x)) +...
simplifies to a power series in x with integer coefficients.
MATHEMATICA
A[_] = 0; m = 16;
Do[A[x_] = Exp[-x A[x]] + Sum[(n+1)^n x^n A[(n+1)x]^n/n! Exp[-(n+1) x A[(n+1)x]], {n, 1, m}] + O[x]^m // Normal, {m}];
CoefficientList[A[x], x] (* Jean-François Alcover, Oct 29 2019 *)
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=sum(k=0, n, (k+1)^k*x^k*subst(A, x, (k+1)*x)^k/k!*exp(-(k+1)*x*subst(A, x, (k+1)*x)+x*O(x^n)))); polcoeff(A, n)}
for(n=0, 20, print1(a(n), ", "))
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 09 2013
STATUS
approved