OFFSET
0,3
COMMENTS
Compare to the LambertW identity:
Sum_{n>=0} (n+2)^n * x^n * G(x)^n/n! * exp(-(n+2)*x*G(x)) = 1/(1 - x*G(x)).
EXAMPLE
O.g.f.: A(x) = 1 + x + 6*x^2 + 133*x^3 + 9403*x^4 + 2065969*x^5 +...
where
A(x) = exp(-2*x*A(2*x)) + 3*x*A(3*x)*exp(-3*x*A(3*x)) + 4^2*x^2*A(4*x)^2/2!*exp(-4*x*A(4*x)) + 5^3*x^3*A(5*x)^3/3!*exp(-5*x*A(5*x)) + 6^4*x^4*A(6*x)^4/4!*exp(-6*x*A(6*x)) + 7^5*x^5*A(7*x)^5/5!*exp(-7*x*A(7*x)) +...
simplifies to a power series in x with integer coefficients.
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=sum(k=0, n, (k+2)^k*x^k*subst(A, x, (k+2)*x)^k/k!*exp(-(k+2)*x*subst(A, x, (k+2)*x)+x*O(x^n)))); polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 15 2013
STATUS
approved