The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A209279 First inverse function (numbers of rows) for pairing function A185180. 6
 1, 1, 2, 2, 1, 3, 2, 3, 1, 4, 3, 2, 4, 1, 5, 3, 4, 2, 5, 1, 6, 4, 3, 5, 2, 6, 1, 7, 4, 5, 3, 6, 2, 7, 1, 8, 5, 4, 6, 3, 7, 2, 8, 1, 9, 5, 6, 4, 7, 3, 8, 2, 9, 1, 10, 6, 5, 7, 4, 8, 3, 9, 2, 10, 1, 11, 6, 7, 5, 8, 4, 9, 3, 10, 2, 11, 1, 12, 7, 6, 8, 5, 9, 4, 10, 3, 11, 2, 12, 1, 13 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 LINKS Boris Putievskiy, Rows n = 1..140 of triangle, flattened Boris Putievskiy, Transformations Integer Sequences And Pairing Functions, arXiv:1212.2732 [math.CO], 2012. Eric Weisstein's World of Mathematics, Pairing functions FORMULA a(n) = floor((A003056(n)+2)/2)+ floor(A002260(n)/2)*(-1)^(A002260(n)+A003056(n)+1). a(n) = |A128180(n)|. a(n) = floor((t+2)/2) + floor(i/2)*(-1)^(i+t+1), where t=floor((-1+sqrt(8*n-7))/2), i=n-t*(t+1)/2. T(r,2s)=s, T(r,2s-1)= r+s-1.(When read as table T(r,s) by antidiagonals.) T(n,k) = ceiling((n + (-1)^(n-k)*k)/2) = (n+k)/2 if n-k even, otherwise (n-k+1)/2. - M. F. Hasler, May 30 2020 EXAMPLE The start of the sequence as table T(r,s) r,s >0 read by antidiagonals: 1...1...2...2...3...3...4...4... 2...1...3...2...4...3...5...4... 3...1...4...2...5...3...6...4... 4...1...5...2...6...3...7...4... 5...1...6...2...7...3...8...4... 6...1...7...2...8...3...9...4... 7...1...8...2...9...3..10...4... ... The start of the sequence as triangle array read by rows: 1; 1, 2; 2, 1, 3; 2, 3, 1, 4; 3, 2, 4, 1, 5; 3, 4, 2, 5, 1, 6; 4, 3, 5, 2, 6, 1, 7; 4, 5, 3, 6, 2, 7, 1, 8; ... Row number r contains permutation numbers form 1 to r. If r is odd (r+1)/2, (r+1)/2-1, (r+1)/2+1,...r-1, 1, r. If r is even r/2, r/2+1, r/2-1, ... r-1, 1, r. MATHEMATICA T[n_, k_] := Abs[(2*k - 1 + (-1)^(n - k)*(2*n + 1))/4]; Table[T[n, k], {n, 1, 15}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 14 2018, after Andrew Howroyd *) PROG (PARI) T(n, k)=abs((2*k-1+(-1)^(n-k)*(2*n+1))/4) \\ Andrew Howroyd, Dec 31 2017 (Python) # Edited by M. F. Hasler, May 30 2020 def a(n): t = int((math.sqrt(8*n-7) - 1)/2); i = n-t*(t+1)/2; return int(t/2)+1+int(i/2)*(-1)**(i+t+1) CROSSREFS Cf. A185180, A128180, A092542, A092543, A209278. Sequence in context: A002947 A241605 A128180 * A074754 A322529 A349526 Adjacent sequences: A209276 A209277 A209278 * A209280 A209281 A209282 KEYWORD nonn,tabl AUTHOR Boris Putievskiy, Jan 15 2013 EXTENSIONS Data corrected by Andrew Howroyd, Dec 31 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 5 09:12 EST 2022. Contains 358585 sequences. (Running on oeis4.)