login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A209273
Decimal expansion of the continued fraction with elements given by A209272.
0
1, 6, 4, 4, 9, 4, 8, 6, 5, 0, 1, 1, 5, 9, 5, 7, 5, 6, 0, 9, 6, 0, 7, 7, 9, 4, 5, 0, 9, 7, 8, 5, 8, 0, 9, 1, 5, 8, 6, 3, 2, 9, 5, 3, 4, 9, 6, 4, 6, 6, 4, 3, 8, 7, 5, 9, 3, 7, 0, 2, 7, 6, 9, 2, 1, 4, 9, 2, 3, 3, 6, 0, 1, 6, 3, 1, 8, 4, 4, 2, 4, 8, 4, 6, 0, 7, 0, 6, 8, 1, 1, 7, 9, 0, 0, 2, 8, 6, 7, 0, 8
OFFSET
1,2
COMMENTS
The numerator and the denominator of the n-th convergent for this number are always squarefree. Close to zeta(2) = 1.644934066848...
PROG
(PARI) /* realprecision = 202 significant digits */ v=[1]; for(k=1, 200, m=1; while(issquarefree(contfracpnqn(concat(v, [m]))[1, 1])+issquarefree(contfracpnqn(concat(v, [m]))[2, 1])<2, m++); v=concat(v, [m]); print((contfracpnqn(v)[1, 1])*1./(contfracpnqn(v)[2, 1]), ""))
CROSSREFS
Cf. A209272.
Sequence in context: A110756 A200698 A013661 * A330934 A019174 A019166
KEYWORD
nonn,cons
AUTHOR
Benoit Cloitre, Jan 15 2013
STATUS
approved