The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A244041 Sum of digits of n written in fractional base 4/3. 9
0, 1, 2, 3, 3, 4, 5, 6, 5, 6, 7, 8, 6, 7, 8, 9, 6, 7, 8, 9, 9, 10, 11, 12, 8, 9, 10, 11, 10, 11, 12, 13, 8, 9, 10, 11, 11, 12, 13, 14, 12, 13, 14, 15, 9, 10, 11, 12, 11, 12, 13, 14, 14, 15, 16, 17, 14, 15, 16, 17, 10, 11, 12, 13, 11, 12, 13, 14, 14, 15, 16, 17 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
The base 4/3 expansion is unique and thus the sum of digits function is well-defined.
LINKS
F. M. Dekking, The Thue-Morse Sequence in Base 3/2, J. Int. Seq., Vol. 26 (2023), Article 23.2.3.
FORMULA
a(n) = A007953(A024631(n)). - Michel Marcus, Jun 17 2014
a(n) < 3 log(n)/log(4/3) < 11 log(n) for n > 1. Possibly the constant factor can be replaced by 7 or 8. - Charles R Greathouse IV, Sep 22 2022
Conjecture: a(n) >> log(n), hence a(n) ≍ log(n). - Charles R Greathouse IV, Nov 03 2022
EXAMPLE
In base 4/3 the number 14 is represented by 3212 and so a(14) = 3 + 2 + 1 + 2 = 8.
MATHEMATICA
p:=4; q:=3; a[n_]:= a[n]= If[n==0, 0, a[q*Floor[n/p]] + Mod[n, p]]; Table[a[n], {n, 0, 75}] (* G. C. Greubel, Aug 20 2019 *)
PROG
(Sage)
def base43sum(n):
L, i = [n], 1
while L[i-1]>3:
x=L[i-1]
L[i-1]=x.mod(4)
L.append(3*floor(x/4))
i+=1
return sum(L)
[base43sum(n) for n in [0..75]]
(PARI) a(n) = p=4; q=3; if(n==0, 0, a(q*(n\p)) + (n%p));
vector(75, n, n--; a(n)) \\ G. C. Greubel, Aug 20 2019
CROSSREFS
Sequence in context: A332809 A290801 A322815 * A331835 A022290 A344350
KEYWORD
nonn,base
AUTHOR
Hailey R. Olafson, Jun 17 2014
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 26 08:47 EDT 2024. Contains 372815 sequences. (Running on oeis4.)