OFFSET
0,3
COMMENTS
The base 4/3 expansion is unique and thus the sum of digits function is well-defined.
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
F. M. Dekking, The Thue-Morse Sequence in Base 3/2, J. Int. Seq., Vol. 26 (2023), Article 23.2.3.
Kevin Ryde, Plot for Upper/Lower Bound Factors (and LaTeX source).
FORMULA
a(n) < 3 log(n)/log(4/3) < 11 log(n) for n > 1. Possibly the constant factor can be replaced by 7 or 8. - Charles R Greathouse IV, Sep 22 2022
Conjecture: a(n) >> log(n), hence a(n) ≍ log(n). - Charles R Greathouse IV, Nov 03 2022
EXAMPLE
In base 4/3 the number 14 is represented by 3212 and so a(14) = 3 + 2 + 1 + 2 = 8.
MATHEMATICA
p:=4; q:=3; a[n_]:= a[n]= If[n==0, 0, a[q*Floor[n/p]] + Mod[n, p]]; Table[a[n], {n, 0, 75}] (* G. C. Greubel, Aug 20 2019 *)
PROG
(Sage)
def base43sum(n):
L, i = [n], 1
while L[i-1]>3:
x=L[i-1]
L[i-1]=x.mod(4)
L.append(3*floor(x/4))
i+=1
return sum(L)
[base43sum(n) for n in [0..75]]
(PARI) a(n) = p=4; q=3; if(n==0, 0, a(q*(n\p)) + (n%p));
vector(75, n, n--; a(n)) \\ G. C. Greubel, Aug 20 2019
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Hailey R. Olafson, Jun 17 2014
STATUS
approved