A244041 Base 4/3 Sum of Digits

Kevin Ryde, March 2024
A244041 is the sum of digits of n in fractional base $4 / 3$. Charles Greathouse in a comment gives the following bounds, and wonders whether factor 11 might be reduced to 7 or 8 .

$$
a(n)<3 \log _{4 / 3} n<11 \log n \quad \text { for } n \geq 2
$$

$3 \log _{4 / 3} n$ would be every digit 3 , with the log as a proxy for the number of base $4 / 3$ digits in n. The log exceeds that number since any $n \geq 3$ starts with a digit 3 so the smallest number with k digits is at least $n=3 .\left(\frac{4}{3}\right)^{k-1}$ which has $\log _{4 / 3} n=k+2.818 \ldots$ Factor 11 is $3 / \log (4 / 3)=10.428 \ldots$ rounded up.

One way to experiment with what factor might be needed is to take a sum of digits s and find the smallest n where sum $a(n)=s$ occurs. This is $n=\mathrm{A} 357425(s)$ and the following plot is the factor needed to cover s.

Prospective factor 7 is surpassed at $s=156$ where the plot is still rising, though at a slowing rate.

The peak so far is near the end $s=467$ with $n=183376210813834725647961191$ for $s / \log n=7.722 \ldots$ so a factor at least that large is required.

See A363758 for the largest sum s possible within a given number of digits.

A corresponding possible lower bound factor L would be,

$$
L \log n<a(n) \quad \text { for } n \geq 1
$$

Again one way to experiment with such a factor is to take a sum of digits s and find the largest n where sum $a(n)=s$ occurs. This is $n=\mathrm{A} 364779(s)$ and the following plot is the factor L needed for a given s.

The low (so far) at $s=11$ might be an initial exception, but it's not particularly obvious whether the rest might be working its way down, or converging on something.

Drops such as at $s=124$ are where $\mathrm{A} 364779(s)$ has a relatively large increase.
See A364751 for the smallest sum s possible within a given number of digits.

