Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #32 Mar 26 2024 09:14:38
%S 0,1,2,3,3,4,5,6,5,6,7,8,6,7,8,9,6,7,8,9,9,10,11,12,8,9,10,11,10,11,
%T 12,13,8,9,10,11,11,12,13,14,12,13,14,15,9,10,11,12,11,12,13,14,14,15,
%U 16,17,14,15,16,17,10,11,12,13,11,12,13,14,14,15,16,17
%N Sum of digits of n written in fractional base 4/3.
%C The base 4/3 expansion is unique and thus the sum of digits function is well-defined.
%H G. C. Greubel, <a href="/A244041/b244041.txt">Table of n, a(n) for n = 0..1000</a>
%H F. M. Dekking, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL26/Dekking/dek25.html">The Thue-Morse Sequence in Base 3/2</a>, J. Int. Seq., Vol. 26 (2023), Article 23.2.3.
%H Kevin Ryde, <a href="/A244041/a244041_1.pdf">Plot for Upper/Lower Bound Factors</a> (and <a href="/A244041/a244041.tex">LaTeX source</a>).
%H <a href="/index/Ba#base_fractional">Index entries for sequences related to fractional bases</a>
%F a(n) = A007953(A024631(n)). - _Michel Marcus_, Jun 17 2014
%F a(n) < 3 log(n)/log(4/3) < 11 log(n) for n > 1. Possibly the constant factor can be replaced by 7 or 8. - _Charles R Greathouse IV_, Sep 22 2022
%F Conjecture: a(n) >> log(n), hence a(n) ≍ log(n). - _Charles R Greathouse IV_, Nov 03 2022
%e In base 4/3 the number 14 is represented by 3212 and so a(14) = 3 + 2 + 1 + 2 = 8.
%t p:=4; q:=3; a[n_]:= a[n]= If[n==0, 0, a[q*Floor[n/p]] + Mod[n, p]]; Table[a[n], {n,0,75}] (* _G. C. Greubel_, Aug 20 2019 *)
%o (Sage)
%o def base43sum(n):
%o L, i = [n], 1
%o while L[i-1]>3:
%o x=L[i-1]
%o L[i-1]=x.mod(4)
%o L.append(3*floor(x/4))
%o i+=1
%o return sum(L)
%o [base43sum(n) for n in [0..75]]
%o (PARI) a(n) = p=4; q=3; if(n==0,0, a(q*(n\p)) + (n%p));
%o vector(75, n, n--; a(n)) \\ _G. C. Greubel_, Aug 20 2019
%Y Cf. A000120, A007953, A024631, A053737, A244040.
%K nonn,base
%O 0,3
%A _Hailey R. Olafson_, Jun 17 2014