login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A243748 Triangle T(n,d): the number of subgroups of order d of the symmetric group S_n as d runs through the divisors of n!. 2
1, 1, 1, 1, 3, 1, 1, 1, 9, 4, 7, 4, 3, 1, 1, 1, 25, 10, 35, 6, 30, 15, 6, 15, 0, 6, 5, 0, 0, 1, 1, 1, 75, 40, 255, 36, 280, 255, 10, 36, 150, 0, 45, 50, 36, 90, 0, 30, 0, 0, 30, 12, 10, 0, 0, 12, 0, 0, 0, 1, 1, 1, 231, 175, 1295, 126, 1645, 120, 1575, 70, 378, 1715, 120, 0, 315, 350, 378, 120, 1435, 0, 0, 0, 245, 126, 120, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,5

COMMENTS

The columns skip the subgroups of S_n which are known not to exist (because their order does not divide the order of S_n, n!). This is just a reduction of rows in the triangle by omitting a large number of zeros.

LINKS

Table of n, a(n) for n=1..86.

EXAMPLE

There are T(3,2)=3 subgroups of S_3 of order 2, namely the groups generated by the permutations (1,2), (1,3) or (2,3).

1;

1,1;

1,3,1,1;

1,9,4,7,4,3,1,1;

1,25,10,35,6,30,15,6,15,0,6,5,0,0,1,1;

PROG

(GAP 4) LoadPackage("SONATA") ;;

Print("\n") ;

N := Factorial(7) ;; # adjusted to the maximum n below

subS := EmptyPlist(N) ;;

for n in [1..7] do

    for e in [1..N] do

        subS[e] := 0 ;

    od;

    g := SymmetricGroup(n) ;

    sg := Size(g) ;

    alls := Subgroups(g) ;

    for s in alls do

        o := Size(s) ;

        if o <= N then

            subS[o] := subS[o]+1 ;;

        fi;

    od ;

    for d in [1..N] do

        if ( sg mod d ) = 0 then

            Print(subS[d], ", ") ;

        fi;

    od;

    Print("\n") ;

od;

CROSSREFS

Cf. A005432 (row sums), A001189 (column d=2), A027423 (row lengths), A218913, A277566, A284210.

Sequence in context: A229142 A156535 A327564 * A340149 A340075 A307847

Adjacent sequences:  A243745 A243746 A243747 * A243749 A243750 A243751

KEYWORD

nonn,tabf

AUTHOR

R. J. Mathar, Jun 09 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 13 11:17 EDT 2021. Contains 344990 sequences. (Running on oeis4.)