login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A348038
a(n) = A003968(n) / gcd(n, A003968(n)), where A003968 is multiplicative with a(p^e) = p*(p+1)^(e-1).
6
1, 1, 1, 3, 1, 1, 1, 9, 4, 1, 1, 3, 1, 1, 1, 27, 1, 4, 1, 3, 1, 1, 1, 9, 6, 1, 16, 3, 1, 1, 1, 81, 1, 1, 1, 2, 1, 1, 1, 9, 1, 1, 1, 3, 4, 1, 1, 27, 8, 6, 1, 3, 1, 16, 1, 9, 1, 1, 1, 3, 1, 1, 4, 243, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 6, 3, 1, 1, 1, 27, 64, 1, 1, 3, 1, 1, 1, 9, 1, 4, 1, 3, 1, 1, 1, 81, 1, 8, 4, 9, 1
OFFSET
1,4
LINKS
FORMULA
a(n) = A003968(n) / A348036(n) = A003968(n) / gcd(n, A003968(n)).
a(n) = A327564(n) / A348039(n).
MATHEMATICA
f[p_, e_] := p*(p + 1)^(e - 1); a[n_] := (m = Times @@ f @@@ FactorInteger[n]) / GCD[n, m]; Array[a, 100] (* Amiram Eldar, Oct 20 2021 *)
PROG
(PARI)
A003968(n) = {my(f=factor(n)); for (i=1, #f~, p= f[i, 1]; f[i, 1] = p*(p+1)^(f[i, 2]-1); f[i, 2] = 1); factorback(f); }
A348038(n) = { my(u=A003968(n)); (u/gcd(n, u)); };
CROSSREFS
Differs from A327564 at the positions given by A347960.
Cf. A003968, A005117 (positions of 1's), A327564, A348036, A348037, A348039.
Sequence in context: A156535 A365427 A366787 * A327564 A243748 A340149
KEYWORD
nonn
AUTHOR
Antti Karttunen, Oct 20 2021
STATUS
approved