login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A243377
Decimal expansion of a constant related to the asymptotic evaluation of Product_{p prime congruent to 1 modulo 4} (1 + 1/p).
0
7, 3, 2, 6, 4, 9, 8, 1, 9, 2, 8, 3, 8, 3, 2, 6, 1, 3, 6, 2, 0, 3, 0, 5, 8, 2, 3, 1, 1, 7, 6, 8, 3, 6, 8, 7, 3, 6, 3, 1, 6, 9, 9, 4, 4, 1, 9, 9, 4, 6, 3, 2, 9, 3, 4, 5, 0, 6, 0, 7, 7, 7, 2, 9, 6, 3, 8, 3, 4, 3, 1, 9, 3, 3, 1, 8, 7, 7, 1, 9, 0, 6, 4, 0, 4, 9, 1, 5, 5, 2, 9, 2, 7, 7, 9, 6, 8, 9, 1, 4, 6, 7, 6
OFFSET
0,1
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.3 Landau-Ramanujan constant, p. 101.
LINKS
Eric Weisstein's World of Mathematics, Ramanujan constant.
FORMULA
Equals (4/Pi^(3/2))*exp(gamma/2)*K, where gamma is the Euler-Mascheroni constant and K the Landau-Ramanujan constant.
Equals 2/(Pi*A088541) = A060294/A088541. - Amiram Eldar, Nov 16 2021
EXAMPLE
0.732649819283832613620305823117683687363...
MATHEMATICA
digits = 103; LandauRamanujanK = 1/Sqrt[2]*NProduct[((1 - 2^(-2^n))*Zeta[2^n]/DirichletBeta[2^n])^(1/2^(n + 1)), {n, 1, 24}, WorkingPrecision -> digits + 5]; 4/Pi^(3/2)*Exp[EulerGamma/2]*LandauRamanujanK // RealDigits[#, 10, digits] & // First (* updated Mar 14 2018 *)
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
STATUS
approved