login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A243376
Decimal expansion of 2*K/Pi, a constant related to the asymptotic evaluation of the number of positive integers all of whose prime factors are congruent to 3 modulo 4, where K is the Landau-Ramanujan constant.
1
4, 8, 6, 5, 1, 9, 8, 8, 8, 3, 8, 5, 8, 9, 0, 9, 9, 7, 1, 2, 7, 2, 4, 5, 6, 4, 0, 5, 8, 6, 8, 2, 3, 4, 0, 5, 5, 3, 8, 1, 7, 1, 9, 8, 1, 7, 3, 9, 5, 4, 1, 2, 1, 3, 6, 8, 8, 1, 5, 4, 5, 1, 0, 8, 1, 6, 2, 9, 8, 5, 5, 0, 9, 3, 2, 0, 7, 5, 8, 1, 7, 1, 4, 7, 6, 0, 2, 0, 2, 1, 0, 3, 8, 1, 0, 6, 9, 3, 7, 1, 2
OFFSET
0,1
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.3 Landau-Ramanujan constant, p. 100.
LINKS
Gareth A. Jones and Alexander K. Zvonkin, A number-theoretic problem concerning pseudo-real Riemann surfaces, arXiv:2401.00270 [math.NT], 2023. See page 5.
Eric Weisstein's MathWorld, Ramanujan constant
FORMULA
2*K/Pi, where K is the Landau-Ramanujan constant (A064533).
EXAMPLE
0.4865198883858909971272456405868234...
MATHEMATICA
digits = 101; LandauRamanujanK = 1/Sqrt[2]*NProduct[((1 - 2^(-2^n))*Zeta[2^n]/DirichletBeta[2^n])^(1/2^(n + 1)), {n, 1, 24}, WorkingPrecision -> digits + 5]; 2*LandauRamanujanK/Pi // RealDigits[#, 10, digits] & // First (* updated Mar 14 2018 *)
CROSSREFS
Cf. A064533.
Sequence in context: A296488 A199294 A155741 * A200411 A198885 A336275
KEYWORD
nonn,cons
AUTHOR
STATUS
approved