login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A243373
Numbers m such that k*phi(n) = Sum_{j|n} sigma(j), where k >= 1 is an integer.
1
1, 2, 6, 9, 10, 14, 18, 26, 42, 66, 90, 126, 150, 186, 234, 266, 342, 490, 666, 1426, 1634, 2394, 4410, 12834, 14706, 16758, 18846, 209754, 308602, 350154, 385434, 1122786, 2777418, 12130734, 15616986, 29682342, 223843466, 270397974, 300398714, 559894482
OFFSET
1,2
COMMENTS
a(49) > 10^11. - Hiroaki Yamanouchi, Aug 24 2014
LINKS
Hiroaki Yamanouchi, Table of n, a(n) for n = 1..48
EXAMPLE
The divisors of 90 are 1, 2, 3, 5, 6, 9, 10, 15, 18, 30, 45, 90 and sigma(1) + sigma(2) + sigma(3) + sigma(5) + sigma(6) + sigma(9) + sigma(10) + sigma(15) + sigma(18) + sigma(30) + sigma(45) + sigma(90) = 1 + 3 + 4 + 6 + 12 + 13 + 18 + 24 + 39 + 72 + 78 + 234 = 504 and phi(n) = 24. Finally 504 / 24 = 21.
MAPLE
with(numtheory): P:=proc(q) local a, b, k, n;
for n from 1 to q do a:=divisors(n); b:=0;
b:=add(sigma(a[k]), k=1..nops(a)); if type(b/phi(n), integer)
then print(n); fi; od; end: P(10^10);
PROG
(PARI) isok(n) = (sumdiv(n, d, sigma(d)) % eulerphi(n)) == 0; \\ Michel Marcus, Jun 04 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
Paolo P. Lava, Jun 04 2014
EXTENSIONS
a(37)-a(40) from Hiroaki Yamanouchi, Aug 24 2014
STATUS
approved