OFFSET
1,9
COMMENTS
If n ends in a 2, 4, 5, 6, 8, or 0, then a(n) = 0. It is conjectured that the converse is true.
If a(n) = 1, then n is in A068673.
a(n) is odd or 0 for all n.
LINKS
Paolo P. Lava, Table of n, a(n) for n = 1..1000 (first 88 terms from Derek Orr)
EXAMPLE
91 and 19 are not both prime, 92 and 29 are not both prime, 93 and 39 are not both prime, 94 and 49 are not both prime, 95 and 59 are not both prime, 96 and 69 are not both prime, but 97 and 79 are both prime. Thus a(9) = 7.
PROG
(PARI) a(n)=for(k=1, 10^4, if(ispseudoprime(eval(concat(Str(n), Str(k)))) && ispseudoprime(eval(concat(Str(k), Str(n)))), return(k)))
n=1; while(n<100, print1(a(n), ", "); n++)
(Python)
import sympy
from sympy import isprime
def a(n):
..for k in range(1, 10**5):
....if isprime(int(str(k)+str(n))) and isprime(int(str(n)+str(k))):
......return k
n = 1
while n < 100:
..print(a(n), end=', ')
..n += 1
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Derek Orr, Jun 06 2014
EXTENSIONS
Inserted a(38)=0 by Paolo P. Lava, Jun 16 2014
STATUS
approved