Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #21 Nov 16 2021 07:21:59
%S 7,3,2,6,4,9,8,1,9,2,8,3,8,3,2,6,1,3,6,2,0,3,0,5,8,2,3,1,1,7,6,8,3,6,
%T 8,7,3,6,3,1,6,9,9,4,4,1,9,9,4,6,3,2,9,3,4,5,0,6,0,7,7,7,2,9,6,3,8,3,
%U 4,3,1,9,3,3,1,8,7,7,1,9,0,6,4,0,4,9,1,5,5,2,9,2,7,7,9,6,8,9,1,4,6,7,6
%N Decimal expansion of a constant related to the asymptotic evaluation of Product_{p prime congruent to 1 modulo 4} (1 + 1/p).
%D Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.3 Landau-Ramanujan constant, p. 101.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Landau-RamanujanConstant.html">Ramanujan constant</a>.
%F Equals (4/Pi^(3/2))*exp(gamma/2)*K, where gamma is the Euler-Mascheroni constant and K the Landau-Ramanujan constant.
%F Equals 2/(Pi*A088541) = A060294/A088541. - _Amiram Eldar_, Nov 16 2021
%e 0.732649819283832613620305823117683687363...
%t digits = 103; LandauRamanujanK = 1/Sqrt[2]*NProduct[((1 - 2^(-2^n))*Zeta[2^n]/DirichletBeta[2^n])^(1/2^(n + 1)), {n, 1, 24}, WorkingPrecision -> digits + 5]; 4/Pi^(3/2)*Exp[EulerGamma/2]*LandauRamanujanK // RealDigits[#, 10, digits] & // First (* updated Mar 14 2018 *)
%Y Cf. A001620, A060294, A064533, A088541.
%K nonn,cons
%O 0,1
%A _Jean-François Alcover_, Jun 04 2014