login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A242517
List of primes p for which p^n - 2 is prime for n = 1, 3, and 5.
3
31, 619, 2791, 4801, 15331, 33829, 40129, 63421, 69151, 98731, 127291, 142789, 143569, 149971, 151849, 176599, 184969, 201829, 210601, 225289, 231841, 243589, 250951, 271279, 273271, 277549, 280591, 392269, 405439, 441799, 472711, 510709, 530599, 568441, 578689
OFFSET
1,1
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..250 from Abhiram R Devesh)
EXAMPLE
31 is in the sequence because
p = 31 (prime),
p - 2 = 29 (prime),
p^3 - 2 = 29789 (prime), and
p^5 - 2 = 28629149 (prime).
MATHEMATICA
Select[Range[600000], PrimeQ[#] && AllTrue[#^{1, 3, 5} - 2, PrimeQ] &] (* Amiram Eldar, Apr 06 2020 *)
PROG
(Python)
import sympy
n=2
while n>1:
....n1=n-2
....n2=((n**3)-2)
....n3=((n**5)-2)
....##Check if n1, n2 and n3 are also primes.
....if sympy.ntheory.isprime(n1)== True and sympy.ntheory.isprime(n2)== True and sympy.ntheory.isprime(n3)== True:
........print(n, " , " , n1, " , ", n2, " , ", n3)
....n=sympy.ntheory.nextprime(n)
(PARI) isok(p) = isprime(p) && isprime(p-2) && isprime(p^3-2) && isprime(p^5-2); \\ Michel Marcus, Apr 06 2020
(PARI) list(lim)=my(v=List(), p=29); forprime(q=31, lim, if(q-p==2 && isprime(q^3-2) && isprime(q^5-2), listput(v, q)); p=q); Vec(v) \\ Charles R Greathouse IV, Apr 06 2020
CROSSREFS
Intersection of A006512, A178251 and A154834, hence, intersection of A240126 and A154834.
Cf. A001359.
Sequence in context: A028142 A028148 A028100 * A028141 A302857 A028096
KEYWORD
nonn,easy
AUTHOR
Abhiram R Devesh, May 17 2014
STATUS
approved