Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #24 Apr 06 2020 09:11:02
%S 31,619,2791,4801,15331,33829,40129,63421,69151,98731,127291,142789,
%T 143569,149971,151849,176599,184969,201829,210601,225289,231841,
%U 243589,250951,271279,273271,277549,280591,392269,405439,441799,472711,510709,530599,568441,578689
%N List of primes p for which p^n - 2 is prime for n = 1, 3, and 5.
%H Amiram Eldar, <a href="/A242517/b242517.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..250 from Abhiram R Devesh)
%e 31 is in the sequence because
%e p = 31 (prime),
%e p - 2 = 29 (prime),
%e p^3 - 2 = 29789 (prime), and
%e p^5 - 2 = 28629149 (prime).
%t Select[Range[600000], PrimeQ[#] && AllTrue[#^{1, 3, 5} - 2, PrimeQ] &] (* _Amiram Eldar_, Apr 06 2020 *)
%o (Python)
%o import sympy
%o n=2
%o while n>1:
%o ....n1=n-2
%o ....n2=((n**3)-2)
%o ....n3=((n**5)-2)
%o ....##Check if n1, n2 and n3 are also primes.
%o ....if sympy.ntheory.isprime(n1)== True and sympy.ntheory.isprime(n2)== True and sympy.ntheory.isprime(n3)== True:
%o ........print(n, " , " , n1, " , ", n2, " , ", n3)
%o ....n=sympy.ntheory.nextprime(n)
%o (PARI) isok(p) = isprime(p) && isprime(p-2) && isprime(p^3-2) && isprime(p^5-2); \\ _Michel Marcus_, Apr 06 2020
%o (PARI) list(lim)=my(v=List(),p=29); forprime(q=31,lim, if(q-p==2 && isprime(q^3-2) && isprime(q^5-2), listput(v,q)); p=q); Vec(v) \\ _Charles R Greathouse IV_, Apr 06 2020
%Y Intersection of A006512, A178251 and A154834, hence, intersection of A240126 and A154834.
%Y Cf. A001359.
%K nonn,easy
%O 1,1
%A _Abhiram R Devesh_, May 17 2014