login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A242514
a(n) is the maximal number of shortest knight's move paths, from origin at center of an infinite open chessboard, to square with coordinates <= n.
6
1, 12, 54, 54, 54, 54, 85, 240, 240, 588, 1512, 1512, 3564, 8700, 8700, 19965, 47124, 47124, 105963, 244244, 244244, 540540, 1224080, 1224080, 2674984, 5974956, 5974956, 12924522, 28553200, 28553200, 61250490, 134104432, 134104432, 285689624, 620826672, 620826672, 1314933000, 2839363800, 2839363800, 5984393805, 12852021420, 12852021420, 26973910215, 57655813500, 57655813500, 120569654700, 256649540640, 256649540640, 535009931280, 1134692142540, 1134692142540, 2358818719950, 4986548028000, 4986548028000, 10340761857030, 21796919253120, 21796919253120, 45102668144040, 94821703158000, 94821703158000, 195825873726600, 410720543218440, 410720543218440, 846739738410930, 1772108740270440, 1772108740270440, 3647615648094990, 7618942347630120, 7618942347630120, 15660031688889048, 32650847564232672
OFFSET
0,2
COMMENTS
For n > 5 the distinct terms of this sequence are conjectured to be identical to A242512: precisely, A242514(n) = A242512(ceiling(2*(n+1)/3)).
REFERENCES
Fred Lunnon, Knights in Daze, to appear.
EXAMPLE
For n=7, there are 240 shortest paths of length 6 steps from (0,0) to (7,7);
no square within 0 <= x,y <= 7 has more shortest paths.
CROSSREFS
KEYWORD
easy,nonn,walk
AUTHOR
Fred Lunnon, May 16 2014 and May 18 2014
STATUS
approved