login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A242511
a(n) = number of knight's move paths of minimal length n steps, from origin (0,0) at center of an infinite open chessboard to square (0,0) for n=0; square (2,-1) for n=1; and square (2n-3, (n+1)mod 2) for n>=2.
6
1, 1, 2, 6, 28, 100, 330, 1050, 3024, 8736, 23220, 62700, 158004, 406692, 986986, 2452450, 5788640, 14002560, 32357052, 76640148, 174174520, 405623400, 909582212, 2089064516, 4633556448, 10519464000, 23120533800, 51977741400, 113365499940, 252725219460, 547593359850, 1211884139250, 2610998927040, 5741708459520, 12309472580460, 26917328938500, 57457069777800, 125016198060600, 265832233972140, 575824335603660, 1220234181784800
OFFSET
0,3
COMMENTS
The squares concerned constitute an infinite, locally fully concertinaed knight's path from the origin, which hugs the axis y=0 and is minimal to each square.
REFERENCES
Fred Lunnon, Knights in Daze, to appear.
FORMULA
For n>=2, a(n) = binomial(n,floor(n/2)-1)/6 *
( (n^2-2*n+6)*(n^2+8)/(n+4) if n even, (n-1)*(n^2-2*n+15) if n odd ).
G.f.: (-10 + 10*x + 127*x^2 - 111*x^3 - 576*x^4 + 410*x^5 + 1072*x^6 - 528*x^7 - 624*x^8 + 144*x^9 + q*(10 + 10*x - 7*x^2 - 3*x^3 + x^4 + x^5))/(q*x^4), where q = sqrt((1 - 2*x)^7*(1 + 2*x)^5). - Benedict W. J. Irwin, Oct 20 2016
EXAMPLE
For n=0 there is a(0)=1 path from (0,0) to (0,0) with 0 step.
For n=1 there is a(1)=1 path from (0,0) to (2,-1) with 1 step.
For n=2 there are a(2)=2 paths from (0,0) to (1,1) with 2 steps:
(0,0) -> (2,-1) -> (1,1) and (0,0) -> (-1,2) -> (1,1).
For n=3 there are a(3)=6 paths from (0,0) to (3,0) with 3 steps:
(0,0)(2,-1)(1,1)(3,0); (0,0)(2,1)(1,-1)(3,0); (0,0)(2,-1)(4,-2)(3,0);
(0,0)(2,1)(4,2)(3,0); (0,0)(-1,-2)(1,-1)(3,0); (0,0)(-1,2)(1,1)(3,0).
MAPLE
A242511 := proc(n)
local a;
if n <=1 then
return 1;
end if ;
a := binomial(n, floor(n/2)-1)/6 ;
if type(n, 'even') then
a*(n^2-2*n+6)*(8+n^2)/(n+4) ;
else
a*(n-1)*(n^2-2*n+15) ;
end if ;
end proc: # R. J. Mathar, May 17 2014
MATHEMATICA
q := (1 - 2 x)^(7/2) (1 + 2 x)^(5/2); CoefficientList[Series[(-10 + 10 x + 127 x^2 - 111 x^3 - 576 x^4 + 410 x^5 + 1072 x^6 - 528 x^7 - 624 x^8 + 144 x^9 + q (10 + 10 x - 7 x^2 - 3 x^3 + x^4 + x^5))/(q*x^4), {x, 0, 20}], x] (* Benedict W. J. Irwin, Oct 20 2016 *)
PROG
(Magma)
[ Max(1, Binomial(d, d div 2 - 1)/6 * // axis-hugging path
( /*if*/ IsEven(d) select (d^2-2*d+6)*(d^2+8)/(d+4)
else (d-1)*(d^2-2*d+15) /*end if*/ )) : d in [0..20] ];
CROSSREFS
KEYWORD
easy,nonn,walk
AUTHOR
Fred Lunnon, May 16 2014 and May 18 2014
STATUS
approved