OFFSET
10,3
COMMENTS
With offset 20 number of compositions of n, where the difference between the number of odd parts and the number of even parts is -10.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 10..1000
FORMULA
Recurrence (for n>=14): (n-10)*(n+20)*(2*n+3)*(2*n+5)*(n^4 + 10*n^3 + 35*n^2 + 50*n - 9976)*a(n) = -400*(n-11)*(n+2)*(n+19)*(2*n+3)*(2*n+7)*a(n-1) + 2*(2*n + 5)*(2*n^7 + 41*n^6 + 500*n^5 + 2585*n^4 - 16152*n^3 - 177396*n^2 - 1963520*n - 4094400)*a(n-2) + 2*(n+2)*(2*n+3)*(2*n+7)*(2*n^5 + 31*n^4 + 183*n^3 + 709*n^2 - 18145*n - 33100)*a(n-3) - (n-4)*(n+6)*(2*n+5)*(2*n+7)*(n^4 + 14*n^3 + 71*n^2 + 154*n - 9880)*a(n-4). - Vaclav Kotesovec, May 20 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, May 16 2014
STATUS
approved