login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A242240
Expansion of Jacobi sn(x, 1/2) / cd(x, 1/2).
2
0, 1, 0, 0, 0, 12, 0, 0, 0, 3024, 0, 0, 0, 4390848, 0, 0, 0, 21224560896, 0, 0, 0, 257991277243392, 0, 0, 0, 6628234834692624384, 0, 0, 0, 319729080846260095008768, 0, 0, 0, 26571747463798134334265819136, 0, 0, 0, 3564202847752289659513902717468672, 0, 0, 0
OFFSET
0,6
FORMULA
a(n) = |A104203(n)|.
E.g.f.: sn(x, 1/2) / cd(x, 1/2).
E.g.f. A(x) satisfies A(x)^2 = sinh(2 * Integral A(x) dx). - Michael Somos, Jun 17 2017
EXAMPLE
G.f. = x + 12*x^5 + 3024*x^9 + 4390848*x^13 + 21224560896*x^17 + ...
MATHEMATICA
a[ n_] := If[ n<0, 0, n! SeriesCoefficient[ JacobiSN[x, 1/2] / JacobiCD[x, 1/2], {x, 0, n}]];
PROG
(PARI) {a(n) = if( n<0, 0, n! * polcoeff( serreverse( intformal( (1 + x^4 + x * O(x^n))^(-1/2))), n))};
CROSSREFS
Cf. A104203.
Sequence in context: A200512 A280832 A104203 * A225341 A369349 A368816
KEYWORD
nonn
AUTHOR
Michael Somos, May 09 2014
STATUS
approved