login
A280832
Sum of the parts in the partitions of n into two squarefree semiprimes.
1
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 0, 0, 0, 16, 0, 0, 0, 40, 21, 0, 0, 24, 25, 0, 27, 56, 29, 30, 31, 64, 0, 0, 35, 108, 37, 0, 39, 80, 82, 42, 86, 132, 90, 0, 94, 192, 147, 50, 0, 156, 106, 108, 110, 168, 114, 0, 118, 240, 305, 0, 63, 128, 195, 132, 201, 340, 138, 140
OFFSET
1,12
EXAMPLE
a(20) = 40; there are two partitions of n into two squarefree semiprimes: (14,6) and (10,10). The sum of the parts in these partitions is 40.
MAPLE
with(numtheory): A280832:=n->n*add(floor(bigomega(i)*mobius(i)^2/2)*floor(2*mobius(i)^2/bigomega(i))*floor(bigomega(n-i)*mobius(i)^2/2)*floor(2*mobius(n-i)^2/bigomega(n-i)), i=2..floor(n/2)): seq(A280832(n), n=1..100);
MATHEMATICA
Table[n Sum[Floor[PrimeOmega[i] MoebiusMu[i]^2/2] Floor[2 MoebiusMu[i]^2 / PrimeOmega[i]] Floor[PrimeOmega[n - i] MoebiusMu[i]^2 / 2] Floor[2 MoebiusMu[n - i]^2 / PrimeOmega[n - i]], {i, 2, Floor[n/2]}], {n, 1, 70}] (* Indranil Ghosh, Mar 09 2017, translated from Maple code * )
spp[n_]:=Total[Flatten[Select[IntegerPartitions[n, {2}], AllTrue[#, SquareFreeQ] && PrimeOmega[ #]=={2, 2}&]]]; Array[spp, 70] (* Harvey P. Dale, Jun 12 2022 *)
PROG
(PARI) for(n=1, 70, print1(n * sum(i=2, floor(n/2), floor(bigomega(i) * moebius(i)^2 / 2) * floor(2*moebius(i)^2 / bigomega(i)) * floor(bigomega(n - i)* moebius(i)^2 / 2) * floor(2*moebius(n - i)^2 / bigomega(n - i))), ", ")) \\ Indranil Ghosh, Mar 09 2017, translated from Maple code
CROSSREFS
Cf. A280829.
Sequence in context: A271437 A271517 A200512 * A104203 A242240 A225341
KEYWORD
nonn,easy
AUTHOR
Wesley Ivan Hurt, Jan 08 2017
STATUS
approved