login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A242242
Least positive primitive root g < prime(n) modulo prime(n) with 2^g - 1 also a primitive root modulo prime(n), or 0 if such a number g does not exist.
3
1, 0, 2, 5, 2, 2, 3, 2, 5, 2, 3, 2, 6, 3, 5, 2, 2, 2, 2, 7, 5, 3, 2, 3, 5, 2, 5, 2, 6, 3, 3, 2, 3, 2, 2, 6, 5, 2, 5, 2, 2, 2, 19, 5, 2, 3, 2, 3, 2, 6, 3, 7, 7, 6, 3, 5, 2, 6, 5, 3, 3, 2, 5, 17, 10, 2, 3, 10, 2, 2
OFFSET
1,3
COMMENTS
Conjecture: a(n) > 0 except for n = 2. In other words, for any prime p > 3, there exists a primitive root 0 < g < p modulo p such that 2^g - 1 is also a primitive root modulo p.
LINKS
Zhi-Wei Sun, Notes on primitive roots modulo primes, arXiv:1405.0290 [math.NT], 2014.
EXAMPLE
a(4) = 5 since both 5 and 2^5 - 1 = 31 are primitive roots modulo prime(4) = 7, but none of 1, 2, 4 and 2^3 - 1 is a primitive root modulo prime(4) = 7.
MATHEMATICA
f[n_]:=f[n]=2^n-1
dv[n_]:=Divisors[n]
Do[Do[If[Mod[f[k], Prime[n]]==0, Goto[aa]]; Do[If[Mod[k^(Part[dv[Prime[n]-1], j])-1, Prime[n]]==0, Goto[aa]], {j, 1, Length[dv[Prime[n]-1]]-1}]; Do[If[rMod[f[k]^(Part[dv[Prime[n]-1], i])-1, Prime[n]]==0, Goto[aa]], {i, 1, Length[dv[Prime[n]-1]]-1}];
Print[n, " ", k]; Goto[bb]; Label[aa]; Continue, {k, 1, Prime[n]-1}]; Label[cc]; Print[n, " ", 0]; Label[bb]; Continue, {n, 1, 70}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, May 09 2014
STATUS
approved