OFFSET
1,1
COMMENTS
Table starts
...3....6...10...15....21....28....36....45....55....66....78....91...105
...5...12...22...35....51....70....92...117...145...176...210...247...287
...8...22...43...71...106...148...197...253...316...386...463...547...638
..13...40...82..139...211...298...400...517...649...796...958..1135..1327
..21...74..157..271...416...592...799..1037..1306..1606..1937..2299..2692
..34..136..304..531...821..1174..1590..2069..2611..3216..3884..4615..5409
..55..250..586.1047..1626..2332..3165..4125..5212..6426..7767..9235.10830
..89..460.1129.2059..3231..4642..6308..8229.10405.12836.15522.18463.21659
.144..846.2176.4047..6411..9256.12587.16429.20782.25646.31021.36907.43304
.233.1556.4195.7955.12716.18442.25138.32821.41527.51256.62008.73783.86581
LINKS
R. H. Hardin, Table of n, a(n) for n = 1..731
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1) +a(n-2)
k=2: a(n) = a(n-1) +a(n-2) +a(n-3)
k=3: a(n) = a(n-1) +a(n-2) +a(n-3) +a(n-4)
k=4: a(n) = a(n-1) +a(n-2) +a(n-3) +a(n-4) +a(n-5)
k=5: a(n) = a(n-1) +a(n-2) +a(n-3) +a(n-4) +a(n-5) +a(n-6)
k=6: a(n) = a(n-1) +a(n-2) +a(n-3) +a(n-4) +a(n-5) +a(n-6) +a(n-7)
k=7: a(n) = a(n-1) +a(n-2) +a(n-3) +a(n-4) +a(n-5) +a(n-6) +a(n-7) +a(n-8)
k=8: a(n) = a(n-1) +a(n-2) +a(n-3) +a(n-4) +a(n-5) +a(n-6) +a(n-7) +a(n-8) +a(n-9)
k=9: a(n) = a(n-1) +a(n-2) +a(n-3) +a(n-4) +a(n-5) +a(n-6) +a(n-7) +a(n-8) +a(n-9) +a(n-10)
Empirical for row n:
n=1: a(n) = (1/2)*n^2 + (3/2)*n + 1
n=2: a(n) = (3/2)*n^2 + (5/2)*n + 1
n=3: a(n) = (7/2)*n^2 + (7/2)*n + 1
n=4: a(n) = (15/2)*n^2 + (9/2)*n + 1
n=5: a(n) = (31/2)*n^2 + (11/2)*n + 1 for n>1
n=6: a(n) = (63/2)*n^2 + (13/2)*n + 1 for n>2
n=7: a(n) = (127/2)*n^2 + (15/2)*n + 1 for n>3
n=8: a(n) = (255/2)*n^2 + (17/2)*n + 1 for n>4
n=9: a(n) = (511/2)*n^2 + (19/2)*n + 1 for n>5
n=10: a(n) = (1023/2)*n^2 + (21/2)*n + 1 for n>6
n=11: a(n) = (2047/2)*n^2 + (23/2)*n + 1 for n>7
n=12: a(n) = (4095/2)*n^2 + (25/2)*n + 1 for n>8
n=13: a(n) = (8191/2)*n^2 + (27/2)*n + 1 for n>9
n=14: a(n) = (16383/2)*n^2 + (29/2)*n + 1 for n>10
n=15: a(n) = (32767/2)*n^2 + (31/2)*n + 1 for n>11
Empirical large-k generalization, for k>n-4: T(n,k) = ((2^n-1)/2)*k^2 + ((2*n+1)/2)*k + 1
Empirical recurrence generalization, for column k: a(n) = sum {i in 1..k+1} a(n-i)
EXAMPLE
Some solutions for n=5 k=4
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
..1....1....1....1....1....1....1....1....1....1....1....1....1....0....1....1
..2....2....0....2....2....1....0....0....2....0....2....2....0....1....2....0
..1....3....2....3....3....2....2....2....3....2....3....3....2....2....3....2
..3....4....3....4....4....3....3....3....0....3....0....0....3....3....4....3
..4....0....4....1....0....4....4....4....4....4....4....4....4....4....1....4
..0....2....2....0....1....0....2....0....2....1....2....1....0....2....0....1
..2....1....1....0....2....1....1....1....1....0....1....2....1....0....2....0
..2....3....0....2....3....0....0....1....0....0....3....4....2....1....3....4
..1....0....0....3....0....2....2....2....3....2....2....3....3....1....0....2
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, May 08 2014
STATUS
approved