login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A242237
Number of length n+6+1 0..6 arrays with every value 0..6 appearing at least once in every consecutive 6+2 elements, and new values 0..6 introduced in order.
1
28, 70, 148, 298, 592, 1174, 2332, 4642, 9256, 18442, 36736, 73174, 145756, 290338, 578344, 1152046, 2294836, 4571230, 9105724, 18138274, 36130792, 71971246, 143364148, 285576250, 568857664, 1133144098, 2257182472, 4496226670
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = a(n-1) + a(n-2) + a(n-3) + a(n-4) + a(n-5) + a(n-6) + a(n-7).
Empirical g.f.: 2*x*(14 + 21*x + 25*x^2 + 26*x^3 + 24*x^4 + 19*x^5 + 11*x^6) / (1 - x - x^2 - x^3 - x^4 - x^5 - x^6 - x^7). - Colin Barker, Nov 01 2018
EXAMPLE
Some solutions for n=5:
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
..1....1....1....1....1....1....1....1....1....1....1....1....1....0....1....1
..2....2....2....2....2....2....2....2....2....2....2....2....2....1....2....2
..3....3....0....3....3....3....0....3....3....3....3....3....3....2....3....3
..4....4....3....4....4....0....3....4....4....4....4....4....1....3....4....4
..0....1....4....5....0....4....4....5....0....5....5....5....4....4....5....5
..5....5....5....1....5....5....5....6....5....6....0....3....5....5....6....1
..6....6....6....6....6....6....6....0....6....0....6....6....6....6....1....6
..1....0....1....0....1....1....1....3....2....5....1....0....0....1....0....0
..3....2....0....3....2....2....0....1....1....1....2....1....5....0....2....2
..2....3....2....2....3....3....2....2....3....2....3....2....2....2....3....3
..3....4....4....3....0....1....5....6....5....3....5....3....3....1....4....6
CROSSREFS
Column 6 of A242239.
Sequence in context: A039460 A245990 A110829 * A182465 A308703 A277987
KEYWORD
nonn
AUTHOR
R. H. Hardin, May 08 2014
STATUS
approved